2022年九年级二次函数模型专题对应练习_第1页
2022年九年级二次函数模型专题对应练习_第2页
2022年九年级二次函数模型专题对应练习_第3页
2022年九年级二次函数模型专题对应练习_第4页
2022年九年级二次函数模型专题对应练习_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二次函数专题巩固提升1.(2022•齐河县改编)如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧).(1)求抛物线的解析式及点B坐标;(2)若点M是线段BC上一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;(3)点D是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、A、B、D为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.2.(2022秋•鄂城区月考)如图,直线y=﹣2x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.3.(2022秋•乐昌市期中)如图,抛物线y=x2+x﹣2与x轴交于A、B两点,与y轴交于点C.(1)求点A,点B和点C的坐标;(2)在抛物线的对称轴上有一动点P,求PB+PC的值最小时的点P的坐标;(3)若点M是直线AC下方抛物线上一动点,求四边形ABCM面积的最大值.4.(2022•罗平县三模改编)如图,已知抛物线y=x2﹣x﹣2与x轴交于A,B两点(点A在点B的右边),与y轴交于点C.(1)求点A,B,C的坐标;(2)此抛物线的对称轴上是否存在点P,使得△ACP是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.(3)点D是X轴上的动点,在抛物线上是否存在点P,使得以P、B、C、D为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.5.(2022•河南模拟)如图,直线y=x﹣与x轴交于点B,与y轴交于点C,抛物线y=ax2+bx﹣经过点A、B、C,且点A坐标是(﹣1,0),点D是直线BC下方抛物线上的一动点.(1)求抛物线的解析式;(2)当四边形ABDC面积最大时,请求出点D的坐标和四边形ABDC面积的最大值?(3)设抛物线的对称轴与x轴相交于点E,在射线CE上是否存在点P,使得△ABP是直角三角形?如果存在,请直接写出AP的长度;如果不存在,请说明理由.6.(2022•红桥区校级模拟)如图,直线y1=﹣x+2与x轴,y轴分别交于B,C,抛物线y=ax2+bx+c(a≠0)经过点A,B,C,点A坐标为(﹣1,0).(1)求抛物线的解析式;(2)抛物线的对称轴与x轴交于点D,连接CD,点P是直线BC上方抛物线上的一动点(不与B,C重合),当点P运动到何处时,四边形PCDB的面积最大?求出此时四边形PCDB面积的最大值和点P坐标;(3)在抛物线上的对称轴上:是否存在一点M,使|MA﹣MC|的值最大;‚是否存在一点N,使△NCD是以CD为腰的等腰三角形?若存在,直接写出点M,点N的坐标;若不存在,请说明理由.7.(2022春•老河口市月考)如图,抛物线y=ax2﹣6ax﹣16a(a<0)与x轴交于A,B两点,与y轴正半轴交于点C,且∠ACB=90°,点P是直线BC上方抛物线上的一个动点.(1)请直接写出A,B,C三点的坐标及抛物线的解析式;(2)连接PB,以BP,BC为一组邻边作平行四边形BCDP,当平行四边形BCDP的面积最大时,求P,D两点的坐标;(3)若点Q是x轴上一动点,是否存在以P,C,Q为顶点的三角形为等腰直角三角形?若存在,请直接写出P,Q两点的坐标;若不存在,请说明理由.8.(2022•宁津县二模)如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的函数解析式.(2)设点D在抛物线上,点E在抛物线的对称轴上,若四边形AODE是平行四边形,求点D的坐标

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论