下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十二章平面直角坐标系小结一、平面内点的坐标特征各象限内点P(a,b)的坐标特征:第一象限:a>0,b>0;第二象限:a<0,b>0;第三象限:a<0,b<0;第四象限:a>0,b<0(说明:一、三象限,横、纵坐标符号相同,即ab>0;二、四象限,横、纵坐标符号相反即ab<0。)坐标轴上点P(a,b)的坐标特征:x轴上:a为任意实数,b=0;y轴上:b为任意实数,a=0;坐标原点:a=0,b=0(说明:若P(a,b)在坐标轴上,则ab=0;反之,若ab=0,则P(a,b)在坐标轴上。)两坐标轴夹角平分线上点P(a,b)的坐标特征:一、三象限:a=b;二、四象限:a=-b二、对称点的坐标特征点P(a,b)关于x轴的对称点是(a,-b);关于y轴的对称点是(-a,b);关于原点的对称点是(-a,-b)三、点到坐标轴的距离点P(x,y)到x轴距离为∣y∣,到y轴的距离为∣x∣四、(1)横坐标相同的两点所在直线垂直于x轴,平行于y轴;(2)纵坐标相同的两点所在直线垂直于y轴,平行于x轴。五、点的平移坐标变化规律坐标平面内,点P(x,y)向右(或左)平移a个单位后的对应点为(x+a,y)或(x-a,y);点P(x,y)向上(或下)平移b个单位后的对应点为(x,y+b)或(x,y-b)。(说明:左右平移,横变纵不变,向右平移,横坐标增加,向左平移,横坐标减小;上下平移,纵变横不变,向上平移,纵坐标增加,向下平移,纵坐标减小。简记为“右加左减,上加下减”)第十三章一次函数一、确定函数自变量的取值范围1、自变量以整式形式出现,自变量的取值范围是全体实数;2、自变量以分式形式出现,自变量的取值范围是使分母不为0的数;3、自变量以偶次方根形式出现,自变量的取值范围是使被开方数大于或等于0(即被开方数≥0)的数;自变量以奇次方根形式出现,自变量的取值范围是全体实数。自变量出现在零次幂或负整数次幂的底数中,自变量的取值范围是使底数不为0的数。(说明:(1)当一个函数解析式含有几种代数式时,自变量的取值范围是各个代数式中自变量取值范围的公共部分;当函数解析式表示具有实际意义的函数时,自变量取值范围除应使函数解析式有意义外,还必须符合实际意义。)一次函数1、一般形式:y=kx+b(k、b为常数,k≠0),当b=0时,y=kx(k≠0),此时y是x的正比例函数。2、一次函数的图像与性质(见下页表)3、确定一次函数图像与坐标轴的交点(1)与x轴交点:,求法:令y=0,得kx+b=0,在解方程,求x;(2)与y轴交点:(0,b),求法:令x=0,求y。 y=kx+b(k≠0)k>0k<0b>0直线经过一、二、三象限 直线经过一、二、四象限b=0直线经过一、三象限及原点 直线经过二、四象限及原点b<0 直线经过一、三、四象限 直线经过二、三、四象限性质y随x的增大而增大(直线自左向右上升)直线一定经过一、三象限y随的增大而减小(直线自左向右下降)直线一定经过二、四象限4、确定一次函数解析式———待定系数法确定一次函数解析式,只需x和y的两对对应值即可求解。具体求法为:y=k1y=k1xy=k2xy=k3xy=k4xk1>k2>k3>k4(按顺时针依次减小)(2)代入x和y的两对对应值,得关于k、b的方程组; (3)解方程组,求出k和b。k和b的意义 ∣k∣决定直线的“平陡”。∣k∣越大,直线越陡(或越靠近y轴);∣k∣越小,直线越平(或越远离y轴);b表示在y轴上的截距。(截距与正负之分)由一次函数图像确定k、b的符号直线上升,k>0;直线下降,k<0;(2)直线与y轴正半轴相交,b>0;直线与y轴负半轴相交,b<07、两条直线的位置关系x=a和y=b的图象x=a的图象是经过点(a,0)且垂直于x轴的一条直线;y=b的图象是经过点(0,b)且垂直于y轴的一条直线。9、由一次函数图像确定x和y的范围(1)当x>a(或x<a)时,求y的范围。求法:直线x=a右侧(或左侧)图象所对应的y的取值范围。(2)当y>b(或y<b)时,求x的范围。求法:直线y=b上方(或下方)图象所对应的x的取值范围。(3)当a<x<b时,求y的范围。求法:直线x=a和x=b之间的图象所对应的y的取值范围。(4)当a<y<b时,求x的范围。求发:直线y=a和y=b之间的图象所对应的x的取值范围。例如:如图10、一次函数图象的平移设m>0,n>0(1)左右平移:直线y=kx+b向右(或向左)平移m个单位后的解析式为y=k(x-m)+b或y=k(x+m)+b。(2)上下平移:直线y=kx+b向上(或向下)平移n个单位后的解析式为y=kx+b+n或y=kx+b-n(说明:规律简记为“左加右减,上加下减”,左右对x而言,上下对y而言。)由图象确定两个一次函数函数值的大小二元一次方程组的图象解法过点(,)和点(,)画直线l1得方程①的图像;过点(,)和点(,)画直线l2得方程②的图像;从图像可知,直线l1与l2相交于一点(或平行或重合),交点坐标为(a,b);因此,原方程组的解为。第十四章三角形中的边角关系一、三角形的分类1、按边分类: 2、按角分类: 不等边三角形 直角三角形三角形 三角形锐角三角形 等腰三角形(等边三角形是特例)斜三角形 钝角三角形二、三角形的边角性质1、三角形的三边关系:三角形中任何两边的和大于第三边;任何两边的差小于第三边。2、三角形的三角关系:三角形内角和定理:三角形的三个内角的和等于180°。三角形外角和定理:三角形的三个外角的和等于360°。三角形的外角性质(1)三角形的一个外角等于与它不相邻的两个内角的和;(2)三角形的一个外角大于与它不相邻的任何一个内角。三、三角形的角平分线、中线和高(说明:三角形的角平分线、中线和高都是线段)巩固训练题:1.已知点P在第二象限,且到x轴的距离是2,到y轴的距离是3,则点P的坐标为.2.如图,直线y=kx+b经过A(3,1)和B(6,0)两点,则不等式0<kx+b<的解集为________.3.已知一次函数图象过点,且与两坐标轴围成的三角形面积为,则此一次函数的解析式为.4.已知整数x满足-5≤x≤5,y1=2x+1,y2=-x+4对任意一个x,m都取y1,y2中的较小值,则m的最大值是()A.1B.3C.9D.115.三角形三边的长分别为8、19、,则最大的边的取值范围是_________.6.已知是一次函数,那么k的值为()A.±3B.3C7.已知一个等腰三角形的周长为20厘米,其中一边是另一边的两倍,则这个三角形的底边长为。8.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度与饭碗数(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?9.在平面直角坐标系中,A点的坐标为(4,0),点P是直线y=-0.5x+3上在第一象限内的一点,O是原点,设P点的坐标为(x,y);(1)如果用P的纵坐标y表示△OPA的面积S,S与y是怎样的函数关系?它的自变量y的取值范围是什么?(2)如果用P的横坐标x表示△OPA的面积S,S与x是怎样的函数关系?它的自变量x的取值范围是什么?(3)在直线y=-0.5x+3上求一点Q,使△QOA是以OA为底的等腰三角形。10.甲、乙两家商场进行促销活动,甲商场采用“慢200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;……(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?(2)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买商品花钱较少?请说明理由。11.已知等腰三角形周长为24cm,若底边长为y(cm),一腰长为x(cm),(1)写出y与x的函数关系式,并求自变量x的取值范围(2)画出这个函数的图象12.某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨1.9元收费:每户每月如果超过20吨,未超过的部分按每吨1.9元收费,超过的部分则按每吨2.8元收费,设某户每月用水量为x吨,应收水费为y元。(1)分别写出每月用水量未超过20吨和超过20吨时,y与x间的函数关系式:(2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨?13.一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动。快车离乙地的路程(km)与行驶的时间x(h)之间的函数关系,如图中线段AB所示。慢车离乙地的路程(km)与行驶的时间x(h)之间的函数关系,如图中线段OC所示。根据图象进行以下研究。解读信息:(1)甲、乙两地之间的距离为_________km;(2)线段AB的解析式为___________________________;线段OC的解析式为____________________________;问题解决:(3)设快、慢车之间的距离为y(km),求y与慢车行驶时间x(h)的函数关系式,并画出函数的图象。14.某土产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.根据下表提供的信息,解答以下问题:土特产种类甲乙丙每辆汽车运载量(吨)865每吨土特产获利(百元)121610(1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x之间的函数关系式.(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种?并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.15.如图所示,某地区对某种药品的需求:y1=-x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度租赁合同中的租赁物描述
- 二零二四年度物流叉车调度与数据分析合同
- 2024年度股权转让合同:关于股东之间转让某公司0%股权的协议2篇
- 二零二四年度园林企业苗木种植与收购合同
- 2024年度高速铁路电缆桥架施工合同2篇
- 2024年度旅游景点开发及运营合同
- 健身房转让合同模板
- 二零二四年度机械设备维修与保养合同
- 供材料合同范本
- 04版个人住宅拆除重建合同
- 福建省泉州市2024-2025学年高一上学期11月期中物理试题(无答案)
- 基于单片机的粮仓多点温湿度监控系统设计-毕业设计说明书
- 先兆流产课件-课件
- 为犯罪嫌疑人提供法律咨询委托协议范例
- 内蒙古包头市昆都仑区第九中学2024-2025学年八年级上学期期中考试道德与法治试题(含答案)
- 中层管理人员财务知识培训
- 大型养路机械司机(打磨车)高级工技能鉴定考试题库(含答案)
- 北京大学心理课程设计
- 地理-湖南省长沙市(炎德英才大联考)长郡中学2025届高三上学期月考试卷(三)试题和答案
- 软件平台施工组织方案
- 2024年部编版高一上学期期末语文试卷及解答参考
评论
0/150
提交评论