版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
./WORD格式可编辑XX农业大学数值分析论文〔设计题目:湖水温度变化模型姓名:庞云杰学院:理学与信息科学学院专业:信息与计算科学班级:201502学号:20155653指导教师:王述香2017年12月18日.目录湖水温度变化模型I摘要IChangemodeloflakewatertemperatureIIAbstract:II1模型的背景问题描述12模型假设13分析与建立模型13.1引入相关变量符号如下:23.2MABLAB基本语句:24模型求解及检验35应用与推广86心得与体会97参考文献98附录10.湖水温度变化模型信息与计算科学2班庞云杰指导教师王述香摘要:影响湖水温度变化的因素有很多,光照,地形等。其中秋季因湖区多风而发生湖水搅动,使水温分层温度现象基本消失,冬季湖面结冰,湖水温度出现逆温层现象,同时,由于地形走势,地理位置湖水成分及太阳照射都会使不同深度的湖水有不同的温度。论文利用数学建模理念和MATLAB软件对水温的变化与分布进行了分析和评论,围绕着湖水温度变化问题,分析并建立了湖水变化问题的数学模型,同时应用多项式拟合的方法来解决未知问题,得出了湖水温度变化最大的范围是在25.7500m处。关键词:深度、分层、温度、数学建模、多项式拟合ChangemodeloflakewatertemperatureStudentmajoringinInformationandComputingScienceclass2PangYunjieTutorWangShunxiangAbstract:Therearemanyfactorsaffectingthechangeoflakewatertemperature,suchaslight,terrain,etc.Theautumnwindandwaterduetothelakemorestirring,thewatertemperaturestratificationtemperaturephenomenondisappeared,frozenlakeinwinter,lakewatertemperatureinversionphenomenon,atthesametime,duetothetrendoftheterrain,watercompositionandsunlocationwillmakethedifferentdepthofthelakeisnotthesametemperature.ThechangeanddistributionoftemperatureusingmathematicalmodelingtheoryandMATLABsoftwareareanalyzedandcommented,aroundthelaketemperaturechange,analysisandestablishamathematicalmodelofwaterchange,atthesametimetheapplicationofpolynomialfittingmethodtosolvetheproblemofunknown,therangeoftemperaturesinthelakeisthebiggestchangein25.7500m.Keywords:Depth,stratification,temperature,mathematicalmodeling,polynomialfitting.模型的背景问题描述湖水在夏天会出现分层现象,其特点为接近湖面的水温度较高,越往下温度越低。这种上热下冷的现象影响了水的对流和混合过程,使得下层水域缺氧,导致水生鱼类的死亡。下表1-1是对某个湖的观测数据。表1-1湖水观测数据深度/m02.34.99.113.718.322.927.2温度/℃22.822.822.820.613.911.711.111.1求解:1.1湖水在10cm处的温度是多少?1.2湖水在什么深度温度变化最大?模型假设针对以上问题,对于湖水温度的模型可以做出如下的假设:1.湖水的温度与湖水内部的流动状态无关;2.湖水内部物质的分布不影响湖水温度的变化;3.湖水的温度不受地形、季节和天气等状况的影响;4.湖水底部平坦,无断沟、无起伏;5.湖水的深度决定了湖水的温度状况;分析与建立模型这道湖水温度变化模型问题主要研究的是湖水温度会随着深度的不同而呈现出一定的规律。但模型中只给出了温度与深度相关的有限实验数据,由此想到可能要用到插值和多项式拟合的方法来求解该模型。假设湖水深度是温度的连续函数,其中一组统计数据为表3-1所示:表3-1湖水观测数据深度/m02.34.99.113.718.322.927.2温度/℃22.822.822.820.613.911.711.111.1引入相关变量符号如下:x:湖水深度,单位为m;y:湖水温度,单位为C,它是湖水深度的函数:y=f<x>;这里要应用数学中多项式拟合的方法,并且在MATLAB中实现编程,先求出湖水温度的函数y,然后再针对求出来的拟合函数进行求导,取极值。这样就可以方便地求解湖水模型中未知的问题了。MABLAB基本语句:>>x=[abcde]创建包含指定元素的行向量;>>y=[abcde]’求该矩阵的转置;>>plot<x,y,’s’>画实线,s为线型;>>a=polyfit<x,y,n>返回多项式系数从最高次系数到最底次系数,n是多项式的阶数;>>polyfit<[abcd],[efgh],n>求其拟合曲线函数方程系数;>>b=regress<Y,X>MATLAB统计工具箱;>>[b,bint,r,rint,statas]=regress<Y,X,alpha>模型求解及检验将湖水模型中所给的已知数据运用MATLAB数学软件进行编程作图,横轴代表湖水深度x,纵轴代表湖水温度y,并用MATLAB数学软件画出散点图,其中绘图<如图4-1>操作的编程操作命令为:>>x=[02.34.99.113.718.322.927.2];>>y=[22.822.822.820.613.911.711.111.1];>>plot<x,y,'r*'>图4-1观察散点图像的特点,由散点图像可知,图形中的散点随不同的深度变化,间距大体适中,但是发现其中有明显的拐点,说明散点分布在一条曲线附近。由此得知湖水深度x与湖水温度之间存在着一种线性关系,因此采用二阶拟合是不合适的,于是对模型相关数据进行四阶拟合并通过实验选取不同的基函数类进行。其中进行四次拟合的编程操作命令为:>>x=[02.34.99.113.718.322.927.2];>>y=[22.822.822.820.613.911.711.111.1];>>polyfit<[02.34.99.113.718.322.927.2],[22.822.822.820.613.911.711.111.1],4>ans=-0.00010.0103-0.22790.997722.3743拟合曲线的函数方程为y=-0.0001*x.^4+0.0103*x.^3-0.2279*x.^2+0.9977*x+22.3743;显示拟合函数图像<如图4-2>的编程操作命令为:>>x=[0:0.1:27.2];>>y=-0.0001*x.^4+0.0103*x.^3-0.2279*x.^2+0.9977*x+22.3743;>>plot<x,y>图4-2观察图像可以发现,采用四阶拟合得到的曲线图像明显要比二阶拟合得到的散点图像效果要好很多。首先,曲线图像显示出比散点图像更加直观的效果,这样便于进一步地进行分析模型;其次,曲线的图像是连续并且可导的,这样就便于使用导数进行相关极值问题的求解。于是,可得水深在10cm处时的温度。其中编程操作命令>>a=polyfit<x,y,4>;>>polyval<a,0.1>ans=22.4718由此就可以求解出来当湖水深度为x=10cm处时的湖水温度为22.4718〔2要求在哪个深度时湖水温度变化最大,也就是求拟合函数的拐点,即二阶导数为零的极值点。其中求出一阶导数的编程操作命令为:>>symsx;>>y=-0.0001*x.^4+0.0103*x.^3-0.2279*x.^2+0.9977*x+22.3743;>>diff<y,x>ans=-1/2500*x^3+309/10000*x^2-2279/5000*x+9977/10000;显示出导数图像<如图4-3>的编程操作命令为:>>x=[0:0.1:27.2];>>y=-1/2500*x.^3+309/10000*x.^2-2279/5000*x+9977/10000;>>plot<x,y>图4-3求出三阶导数的编程操作命令为:>>symsx;>>y=-1/2500*x.^3+309/10000*x.^2-2279/5000*x+9977/10000;>>diff<y,x>ans=-3/2500*x^2+309/5000*x-2279/5000;显示出三阶导数<如图4-4>的编程操作命令为:>>x=[0:0.1:27.2];>>y=-3/2500*x.^2+309/5000*x-2279/5000;>>plot<x,y>图4-4求出二阶导数的编程操作命令为:>>symsx;>>y=-3/2500*x.^2+309/5000*x-2279/5000;>>diff<y,x>ans=-3/1250*x+309/5000;显示出二阶导数<如图4-5>的编程操作命令为:>>x=[0:0.1:27.2];>>y=-3/1250*x+309/5000;>>plot<x,y>图4-5因为当二阶导数取零时,得到的极值点就是该模型中湖水温度变化最大的地方。因此令二阶导数等于零,有y=-3/1250*x+309/5000=0;于是就可以求解出湖水深度x=25.7500m其中求解的编程操作命令为:>>y=0;subs<solve<'y=-3/1250*x+309/5000'>>ans=25.7500这样就得出了所求模型的最终结果,当湖水深度在x=25.7500m处时,湖水温度的变化是最大的应用与推广对湖水温度变化模型的建立,可以更加的了解由于湖水温度变化而形成的规律,从而更加有利于水产业的经济收入。根据数学模型可以确定出在不同的水深环境下饲养相应的鱼类,并且可以通过了解水温的变化,可以了解水中生物的生长情况和生长环境。为水中生物的生长和繁殖提供了至关重要的保证,进一步更好的带动了经济的发展和更有利于环保工作。为中国梦实现做一定的贡献。心得与体会通过本次数值分析课程设计,我了解到数值分析的重要性,数值分析如何去建立数学模型来解决研究现实问题。同时,我MATLAB的使用方法又进一步的掌握。数学建模不像是解一道应用题那样简单,需要自己仔细去发现问题解决问题,真的需要一定的能力,一定的耐心,一定的动手能力。也发现了自身的许多不足,没有持之以恒的耐心,不认真,缺乏动手能力。多亏了现在如此发达的网络,给我们提供了丰富的资料供我们借鉴,经过本次对湖水温度变化的数学建模,我掌握了其基本的工作步骤,要求,我相信在今后的学习中我会更加熟练的运用此项知识。最后感谢我数值分析老师王老师的教导,这是课程设计的成功的基础就是我们日常的数值分析的学习。参考文献[1]基础教学部数学系.数学建模;[2]姜启源,谢金星,等.数学模型.北京:高等教育出版社,2005;[3]PelzerH.Ingeniervermessung[M].Stuttgart:KonradWittwer,2001;[4]高隆昌,杨元,等.数学建模理论基础.北京:科学出版社,2007;[5]MATLAB7.0版教程.网站;[6]<<高等数学>>〔第五版岩石主编.高等教育出版社;附录其中求解该模型的全部MATLAB程序为:>>x=[02.34.99.113.718.322.927.2];>>y=[22.822.822.820.613.911.711.111.1];>>plot<x,y,'r*'>>>x=[02.34.99.113.718.322.927.2];>>y=[22.822.822.820.613.911.711.111.1];>>polyfit<[02.34.99.113.718.322.927.2],[22.822.822.820.613.911.711.111.1],4>ans=-0.00010.0103-0.22790.997722.3743>>x=[0:0.1:27.2];>>y=-0.0001*x.^4+0.0103*x.^3-0.2279*x.^2+0.9977*x+22.3743;>>plot<x,y>>>a=polyfit<x,y,4>;>>
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年09月江西2024年中国农业发展银行江西分行校园招考笔试历年参考题库附带答案详解
- 高中教育信息化建设合作项目2025版合同3篇
- 2024年09月江苏上海商业储蓄银行无锡分行招考笔试历年参考题库附带答案详解
- 2024年09月吉林民生银行长春分行社会招考(922)笔试历年参考题库附带答案详解
- 2024年08月成都农商银行广安分行招考笔试历年参考题库附带答案详解
- 2024年08月中国邮政储蓄银行内蒙古分行校园招聘(25日)笔试历年参考题库附带答案详解
- 2025年度创新创业大赛路演赞助合同3篇
- 2025年度新型草捆智能化买卖合同3篇
- 2024年08月中国人寿财产保险股份有限公司龙岩市中心支公司(福建)招考2名工作人员笔试历年参考题库附带答案详解
- 2024年08月黑龙江中信银行哈尔滨分行社会招考(823)笔试历年参考题库附带答案详解
- 2205双相不锈钢的焊接工艺
- 2023年全国高中数学联赛江西省预赛试题及答案
- 啤酒厂糖化车间热量衡算
- 英文标点符号用法(句号分号冒号问号感叹号)(课堂)课件
- 22部能够疗伤的身心灵疗愈电影
- 领导干部有效授权的技巧与艺术课件
- DB37-T 1915-2020 安全生产培训质量控制规范-(高清版)
- 陕西省商洛市各县区乡镇行政村村庄村名居民村民委员会明细
- 实习生请假条
- 光伏电站继电保护运行规程
- 厨房的管理流程与制度及厨房岗位工作流程
评论
0/150
提交评论