版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省哈尔滨光华中学2024届中考数学全真模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列图形中为正方体的平面展开图的是()A. B.C. D.2.下列图形中,可以看作是中心对称图形的是()A. B. C. D.3.将一次函数的图象向下平移2个单位后,当时,的取值范围是()A. B. C. D.4.如图,不等式组的解集在数轴上表示正确的是()A. B.C. D.5.分式的值为0,则x的取值为()A.x=-3 B.x=3 C.x=-3或x=1 D.x=3或x=-16.如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的-元二次方程-x2+mx-t=0(t为实数)在l<x<3的范围内有解,则t的取值范围是(
)A.-5<t≤4
B.3<t≤4
C.-5<t<3
D.t>-57.某青年排球队12名队员年龄情况如下:年龄1819202122人数14322则这12名队员年龄的众数、中位数分别是()A.20,19 B.19,19 C.19,20.5 D.19,208.如图是某几何体的三视图,下列判断正确的是()A.几何体是圆柱体,高为2 B.几何体是圆锥体,高为2C.几何体是圆柱体,半径为2 D.几何体是圆锥体,直径为29.如图,在菱形纸片ABCD中,AB=4,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则sin∠AFG的值为()A. B. C. D.10.一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.如果分式的值是0,那么x的值是______.12.如图,设△ABC的两边AC与BC之和为a,M是AB的中点,MC=MA=5,则a的取值范围是_____.13.在数轴上与所对应的点相距4个单位长度的点表示的数是______.14.如图,在中,CM平分交AB于点M,过点M作交AC于点N,且MN平分,若,则BC的长为______.15.如图,扇形的半径为,圆心角为120°,用这个扇形围成一个圆锥的侧面,所得的圆锥的高为______.16.若-2amb4与5a2bn+7是同类项,则m+n=.17.如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=43,则S阴影=_____.三、解答题(共7小题,满分69分)18.(10分)如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,∠PAB=38.1°,∠PBA=26.1.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A,B为参照点,结果精确到0.1米)(参考数据:sin38.1°=0.62,cos38.1°=0.78,tan38.1°=0.80,sin26.1°=0.41,cos26.1°=0.89,tan26.1°=0.10)19.(5分)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与x轴交于点A(1,0)和点B(﹣3,0).绕点A旋转的直线l:y=kx+b1交抛物线于另一点D,交y轴于点C.(1)求抛物线的函数表达式;(2)当点D在第二象限且满足CD=5AC时,求直线l的解析式;(3)在(2)的条件下,点E为直线l下方抛物线上的一点,直接写出△ACE面积的最大值;(4)如图2,在抛物线的对称轴上有一点P,其纵坐标为4,点Q在抛物线上,当直线l与y轴的交点C位于y轴负半轴时,是否存在以点A,D,P,Q为顶点的平行四边形?若存在,请直接写出点D的横坐标;若不存在,请说明理由.20.(8分)两家超市同时采取通过摇奖返现金搞促销活动,凡在超市购物满100元的顾客均可以参加摇奖一次.小明和小华对两家超市摇奖的50名顾客获奖情况进行了统计并制成了图表(如图)奖金金额获奖人数20元15元10元5元商家甲超市5101520乙超市232025(1)在甲超市摇奖的顾客获得奖金金额的中位数是,在乙超市摇奖的顾客获得奖金金额的众数是;(2)请你补全统计图1;(3)请你分别求出在甲、乙两超市参加摇奖的50名顾客平均获奖多少元?(4)图2是甲超市的摇奖转盘,黄区20元、红区15元、蓝区10元、白区5元,如果你购物消费了100元后,参加一次摇奖,那么你获得奖金10元的概率是多少?21.(10分)下面是小星同学设计的“过直线外一点作已知直线的平行线”的尺规作图过程:已知:如图,直线l和直线l外一点A求作:直线AP,使得AP∥l作法:如图①在直线l上任取一点B(AB与l不垂直),以点A为圆心,AB为半径作圆,与直线l交于点C.②连接AC,AB,延长BA到点D;③作∠DAC的平分线AP.所以直线AP就是所求作的直线根据小星同学设计的尺规作图过程,使用直尺和圆规,补全图形(保留作图痕迹)完成下面的证明证明:∵AB=AC,∴∠ABC=∠ACB(填推理的依据)∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(填推理的依据)∴∠DAC=2∠ABC∵AP平分∠DAC,∴∠DAC=2∠DAP∴∠DAP=∠ABC∴AP∥l(填推理的依据)22.(10分)已知四边形ABCD为正方形,E是BC的中点,连接AE,过点A作∠AFD,使∠AFD=2∠EAB,AF交CD于点F,如图①,易证:AF=CD+CF.(1)如图②,当四边形ABCD为矩形时,其他条件不变,线段AF,CD,CF之间有怎样的数量关系?请写出你的猜想,并给予证明;(2)如图③,当四边形ABCD为平行四边形时,其他条件不变,线段AF,CD,CF之间又有怎样的数量关系?请直接写出你的猜想.图①图②图③23.(12分)如图,在菱形ABCD中,作于E,BF⊥CD于F,求证:.24.(14分)在边长为1的5×5的方格中,有一个四边形OABC,以O点为位似中心,作一个四边形,使得所作四边形与四边形OABC位似,且该四边形的各个顶点都在格点上;求出你所作的四边形的面积.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】
利用正方体及其表面展开图的特点依次判断解题.【题目详解】由四棱柱四个侧面和上下两个底面的特征可知A,B,D上底面不可能有两个,故不是正方体的展开图,选项C可以拼成一个正方体,故选C.【题目点拨】本题是对正方形表面展开图的考查,熟练掌握正方体的表面展开图是解题的关键.2、A【解题分析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.3、C【解题分析】
直接利用一次函数平移规律,即k不变,进而利用一次函数图象的性质得出答案.【题目详解】将一次函数向下平移2个单位后,得:,当时,则:,解得:,当时,,故选C.【题目点拨】本题主要考查了一次函数平移,解一元一次不等式,正确利用一次函数图象上点的坐标性质得出是解题关键.4、B【解题分析】
首先分别解出两个不等式,再确定不等式组的解集,然后在数轴上表示即可.【题目详解】解:解第一个不等式得:x>-1;解第二个不等式得:x≤1,在数轴上表示,故选B.【题目点拨】此题主要考查了解一元一次不等式组,以及在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<“>”要用空心圆点表示.5、A【解题分析】
分式的值为2的条件是:(2)分子等于2;(2)分母不为2.两个条件需同时具备,缺一不可.据此可以解答本题.【题目详解】∵原式的值为2,∴,∴(x-2)(x+3)=2,即x=2或x=-3;又∵|x|-2≠2,即x≠±2.∴x=-3.故选:A.【题目点拨】此题考查的是对分式的值为2的条件的理解,该类型的题易忽略分母不为2这个条件.6、B【解题分析】
先利用抛物线的对称轴方程求出m得到抛物线解析式为y=-x2+4x,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x2+4x与直线y=t在1<x<3的范围内有公共点可确定t的范围.【题目详解】∵抛物线y=-x2+mx的对称轴为直线x=2,∴,解之:m=4,∴y=-x2+4x,当x=2时,y=-4+8=4,∴顶点坐标为(2,4),∵关于x的-元二次方程-x2+mx-t=0(t为实数)在l<x<3的范围内有解,当x=1时,y=-1+4=3,当x=2时,y=-4+8=4,∴3<t≤4,故选:B【题目点拨】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.7、D【解题分析】
先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.【题目详解】这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为=1.故选D.【题目点拨】本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义.8、A【解题分析】试题解析:根据主视图和左视图为矩形是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱,再根据左视图的高度得出圆柱体的高为2;故选A.考点:由三视图判断几何体.9、B【解题分析】
如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.由题意可得:DE=1,∠HDE=60°,△BCD是等边三角形,即可求DH的长,HE的长,AE的长,
NE的长,EF的长,则可求sin∠AFG的值.【题目详解】解:如图:过点E作HE⊥AD于点H,连接AE交GF于点N,连接BD,BE.
∵四边形ABCD是菱形,AB=4,∠DAB=60°,
∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB
∴∠HDE=∠DAB=60°,
∵点E是CD中点
∴DE=CD=1
在Rt△DEH中,DE=1,∠HDE=60°
∴DH=1,HE=
∴AH=AD+DH=5
在Rt△AHE中,AE==1
∴AN=NE=,AE⊥GF,AF=EF
∵CD=BC,∠DCB=60°
∴△BCD是等边三角形,且E是CD中点
∴BE⊥CD,
∵BC=4,EC=1
∴BE=1
∵CD∥AB
∴∠ABE=∠BEC=90°
在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.
∴EF=由折叠性质可得∠AFG=∠EFG,
∴sin∠EFG=sin∠AFG=,故选B.【题目点拨】本题考查了折叠问题,菱形的性质,勾股定理,添加恰当的辅助线构造直角三角形,利用勾股定理求线段长度是本题的关键.10、D【解题分析】试题分析:列表如下
黑
白1
白2
黑
(黑,黑)
(白1,黑)
(白2,黑)
白1
(黑,白1)
(白1,白1)
(白2,白1)
白2
(黑,白2)
(白1,白2)
(白2,白2)
由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是.故答案选D.考点:用列表法求概率.二、填空题(共7小题,每小题3分,满分21分)11、1.【解题分析】
根据分式为1的条件得到方程,解方程得到答案.【题目详解】由题意得,x=1,故答案是:1.【题目点拨】本题考查分式的值为零的条件,分式为1需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.12、10<a≤10.【解题分析】
根据题设知三角形ABC是直角三角形,由勾股定理求得AB的长度及由三角形的三边关系求得a的取值范围;然后根据题意列出二元二次方程组,通过方程组求得xy的值,再把该值依据根与系数的关系置于一元二次方程z2-az+=0中,最后由根的判别式求得a的取值范围.【题目详解】∵M是AB的中点,MC=MA=5,∴△ABC为直角三角形,AB=10;∴a=AC+BC>AB=10;令AC=x、BC=y.∴,∴xy=,∴x、y是一元二次方程z2-az+=0的两个实根,∴△=a2-4×≥0,即a≤10.综上所述,a的取值范围是10<a≤10.故答案为10<a≤10.【题目点拨】本题综合考查了勾股定理、直角三角形斜边上的中线及根的判别式.此题的综合性比较强,解题时,还利用了一元二次方程的根与系数的关系、根的判别式的知识点.13、2或﹣1【解题分析】解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣1.故答案为2或﹣1.点睛:本题考查数轴,涉及有理数的加减运算、分类讨论的思想.14、1【解题分析】
根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.【题目详解】∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=1,故答案为1.【题目点拨】本题考查含30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15、4cm【解题分析】
求出扇形的弧长,除以2π即为圆锥的底面半径,然后利用勾股定理求得圆锥的高即可.【题目详解】扇形的弧长==4π,
圆锥的底面半径为4π÷2π=2,
故圆锥的高为:=4,
故答案为4cm.【题目点拨】本题考查了圆锥的计算,重点考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.16、-1.【解题分析】试题分析:根据同类项是字母相同且相同字母的指数也相同,可得方程组,根据解方程组,可得m、n的值,根据有理数的加法,可得答案.试题解析:由-2amb4与5a2bn+7是同类项,得m=2n+7=4解得m=2n=-3∴m+n=-1.考点:同类项.17、8π3【解题分析】
根据垂径定理求得CE=ED=23,然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB-S△DOE+S【题目详解】如图,假设线段CD、AB交于点E,∵AB是O的直径,弦CD⊥AB,∴CE=ED=2又∵∠BCD=30∴∠DOE=2∠BCD=60∴OE=DE∴S阴影=S扇形ODB−S△DOE+S△BEC=60故答案为:8π3【题目点拨】考查圆周角定理,垂径定理,扇形面积的计算,熟练掌握扇形的面积公式是解题的关键.三、解答题(共7小题,满分69分)18、49.2米【解题分析】
设PD=x米,在Rt△PAD中表示出AD,在Rt△PDB中表示出BD,再由AB=80.0米,可得出方程,解出即可得出PD的长度,继而也可确定小桥在小道上的位置.【题目详解】解:设PD=x米,∵PD⊥AB,∴∠ADP=∠BDP=90°.在Rt△PAD中,,∴.在Rt△PBD中,,∴.又∵AB=80.0米,∴,解得:x≈24.6,即PD≈24.6米.∴DB=2x=49.2米.答:小桥PD的长度约为24.6米,位于AB之间距B点约49.2米.19、(1)y=x2+x﹣;(2)y=﹣x+1;(3)当x=﹣2时,最大值为;(4)存在,点D的横坐标为﹣3或或﹣.【解题分析】
(1)设二次函数的表达式为:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即可求解;(2)OC∥DF,则即可求解;(3)由S△ACE=S△AME﹣S△CME即可求解;(4)分当AP为平行四边形的一条边、对角线两种情况,分别求解即可.【题目详解】(1)设二次函数的表达式为:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即:解得:故函数的表达式为:①;(2)过点D作DF⊥x轴交于点F,过点E作y轴的平行线交直线AD于点M,∵OC∥DF,∴OF=5OA=5,故点D的坐标为(﹣5,6),将点A、D的坐标代入一次函数表达式:y=mx+n得:,解得:即直线AD的表达式为:y=﹣x+1,(3)设点E坐标为则点M坐标为则∵故S△ACE有最大值,当x=﹣2时,最大值为;(4)存在,理由:①当AP为平行四边形的一条边时,如下图,设点D的坐标为将点A向左平移2个单位、向上平移4个单位到达点P的位置,同样把点D左平移2个单位、向上平移4个单位到达点Q的位置,则点Q的坐标为将点Q的坐标代入①式并解得:②当AP为平行四边形的对角线时,如下图,设点Q坐标为点D的坐标为(m,n),AP中点的坐标为(0,2),该点也是DQ的中点,则:即:将点D坐标代入①式并解得:故点D的横坐标为:或或.【题目点拨】本题考查的是二次函数综合运用,涉及到图形平移、平行四边形的性质等,关键是(4)中,用图形平移的方法求解点的坐标,本题难度大.20、(1)10,5元;(2)补图见解析;(3)在甲、乙两超市参加摇奖的50名顾客平均获奖分别为10元、8.2元;(4).【解题分析】
(1)根据中位数、众数的定义解答即可;(2)根据表格中的数据补全统计图即可;(3)根据计算平均数的公式求解即可;(4)根据扇形统计图,结合概率公式求解即可.【题目详解】(1)在甲超市摇奖的顾客获得奖金金额的中位数是=10元,在乙超市摇奖的顾客获得奖金金额的众数5元,故答案为:10元、5元;(2)补全图形如下:(3)在甲超市平均获奖为=10(元),在乙超市平均获奖为=8.2(元);(4)获得奖金10元的概率是=.【题目点拨】本题考查了中位数及众数的定义、平均数的计算公式及简单概率的求法,熟知这些知识点是解决本题的关键.21、(1)详见解析;(2)(等边对等角),(三角形外角性质),(同位角相等,两直线平行).【解题分析】
(1)根据角平分线的尺规作图即可得;
(2)分别根据等腰三角形的性质、三角形外角的性质和平行线的判定求解可得.【题目详解】解:(1)如图所示,直线AP即为所求.(2)证明:∵AB=A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年工程扩建项目补充协议协议
- 2024年新房地产经纪协议样式
- 2024年专业劳务派遣协议模板集锦
- 消防课件模版教学课件
- 镜架调校课件教学课件
- 个人古籍保护贷款还款协议
- 产业环境写字楼物业管理与思考
- 人力资源合作合同书样本
- 企业信用担保协议书
- 企业生态管理贷款合同模板
- 廉洁风险点及控制措施
- 2024年广西来宾产业投资集团有限公司招聘笔试参考题库含答案解析
- 项目管理甘特图课件
- 2024年甘肃省普通高中信息技术会考试题(含24套)
- 我国的武装力量课件
- 液化石油气瓶安全使用告知书范文
- 供应室护理责任组长竞聘
- 高中数学教师的专业发展路径
- LTC与铁三角从线索到回款
- 《旅游市场营销》课程教学设计
- 工程流体力学课后习题答案-(杜广生)
评论
0/150
提交评论