




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年青岛版数学八年级上册《5.4平行线的性质定理和判定定理》同步练习一 、选择题1.如果a∥b,b∥c,那么a∥c,这个推理的依据是(
)A.等量代换B.经过直线外一点,有且只有一条直线与已知直线平行C.平行线的定义
D.平行于同一直线的两直线平行2.已知∠AOB,P是任一点,过点P画一条直线与OA平行,则这样的直线()A.有且仅有一条
B.有两条
C.不存在
D.有一条或不存在3.如图,直线m、n被直线a、b所截,下列条件中,不能判断直线m∥n的是()A.∠2=∠5B.∠3+∠4=180°C.∠3=∠5D.∠1=∠64.如图,在下列选项条件中,能判断AD∥BC的是()A.∠1=∠2B.∠3=∠4C.∠BCD+∠ABC=180°D.∠BAD+∠ABC=180°5.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则c、d的位置关系为()A.互相垂直B.互相平行C.相交D.没有确定关系6.如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为()A.30°B.45°C.60°D.90°7.如图,如果AB∥CD,CD∥EF,那么∠BCE等于()A.∠1+∠2B.∠2﹣∠1C.180°﹣∠2+∠1D.180°﹣∠1+∠28.两条平行线被第三条直线所截,一对同旁内角的比为2:7,则这两个角中较大的角的度数为(
)A.40°
B.70°
C.100°
D.140°9.如图,把长方形ABCD沿直线EF折叠,若∠1=20°,则∠2等于()A.80°B.70°C.40°D.20°10.已知AB∥CD,直线EF分别交AB,CD于点G,H,∠EGB=25°,将一个含有60°角的直角三角尺如图放置(60°角的顶点与H重合),则∠PHG等于()A.30°B.35°C.40°D.45°二 、填空题11.过直线外一点画已知直线的平行线,能够画出
条直线与已知直线平行。12.如图,请你添加一个条件,使得AD∥BC,你添加的条件是__________.13.如图所示,A、B之间是一座山,一条铁路要过A、B两县,在A地测得铁路走向是北偏东64°,那么B地按南偏西的方向施工,才能使铁路在山腰中准确接通.14.如图,直线l1∥l2,并且被直线l3,l4所截,则∠α=_______.15.如图,OP∥QR∥ST,若∠2=110°,∠3=120°,则∠1=_______.16.如图,已知AB∥EF,∠C=90°,则α、β与γ的关系是.三 、解答题17.在同一平面内,有三条直线a,b,c,它们之间有哪几种可能的位置关系?画图说明.18.如图,已知∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.19.如图,已知直线AB与直线CD被直线GH所截,交点分别为点E、F,∠AEF=∠EFD.(1)AB与CD平行吗?为什么?(2)若ME是∠AEF的平分线,FN是∠EFD的平分线,则能说明EM与FN平行吗?如果能,请说明理由;如果不能,还应添加什么条件?20.如图,已知AB∥CD,∠1:∠2:∠3=1:2:3.求证:BA平分∠EBF.下面给出证法1.证法1:设∠1、∠2、∠3的度数分别为x,2x,3x.∵AB∥CD,∴2x+3x=180°,解得x=36°∴∠1=36°,∠2=72°,∠3=108°∵∠EBD=180°,∴∠EBA=72°∴BA平分∠EBF请阅读证法1后,找出与证法1不同的证法2,并写出证明过程.21.如图,已知∠A=∠1,∠C=∠D.试说明FD∥BC.22.如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.(1)探究猜想:①若∠A=30°,∠D=40°,则∠AED等于多少度?②若∠A=20°,∠D=60°,则∠AED等于多少度?③猜想图1中∠AED,∠EAB,∠EDC的关系并证明你的结论.(2)拓展应用:如图2,射线FE与矩形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界),其中区域③④位于直线AB上方,P是位于以上4个区域上的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).23.已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,点P是直线l3上一动点(1)如图1,当点P在线段CD上运动时,∠PAC,∠APB,∠PBD之间存在什么数量关系?请你猜想结论并说明理由.(2)当点P在C、D两点的外侧运动时(P点与点C、D不重合,如图2和图3),上述(1)中的结论是否还成立?若不成立,请直接写出∠PAC,∠APB,∠PBD之间的数量关系,不必写理由.
答案1.D2.D3.C.4.D.5.B6.B7.C.8.D9.B10.B11.答案为:1.12.答案为:本题答案不唯一,如∠1=∠B.13.答案为:64°.14.答案为:64°.15.答案为:50°16.答案为:α+β﹣γ=90°.17.解:有四种可能的位置关系,如下图:18.证明:∵BE⊥FD,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB∥CD.19.解:(1)平行,内错角相等,两直线平行;(2)平行,由∠AEF=2∠MEF,∠DFE=2∠NFE,则∠MEF=∠NFE,得ME∥FN20.证明:∵AB∥CD,∴∠2+∠3=180°,∵∠1:∠2:∠3=1:2:3,∴设∠1=x°,∠2=2x°,∠3=3x°,∴2x+3x=180,解得:x=36,∴∠1=36°,∠2=72°,∴∠EBA=180°-36°-72°=72°,∴BA平分∠EBF.21.解:∵∠1=∠A,∴CE∥AD,
∴∠2=∠D,
∵∠C=∠D,
∴∠2=∠C,
∴FD∥BC22.解:(1)①∠AED=70°.②∠AED=80°.③猜想:∠AED=∠EAB+∠EDC.证明:如图,延长AE交DC于点F.∵AB∥DC,∴∠EAB=∠EFD.∵∠AED为△EDF的外角,∴∠AED=∠EFD+∠EDF=∠EAB+∠EDC.(2)当点P在区域①时,∠EPF=360°-(∠PEB+∠PFC);当点P在区域②时,∠EPF=∠PEB+∠PFC;当点P在区域③时,∠EPF=∠PEB-∠PFC;当点P在区域④时,∠EPF=∠PFC-∠P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 瑜伽行业私教课程合同
- 房屋代理销售协议
- 夫妻共同担保签字借款合同
- 外立面装修施工合同
- 汽车零部件生产加工合作协议
- 数字文化创意产业投资合同
- 产品研发合作框架协议
- 国家建造师聘用协议书
- 机关事业单位编外人员劳动合同书
- 协议离婚制度存在的问题及完善
- 2024年新高考全国1卷第16题说题课件
- 【财务共享服务模式探究的文献综述4000字】
- (正式版)CB∕T 4553-2024 船舶制造舱室封舱及密性试验作业安全管理规定
- 敬语专项练习-高考日语复习
- 窗帘工程招标书
- 2022松江JB-9102BA火灾报警控制器(联动型)
- 学校食堂食品安全主体责任风险管控清单(日管控)
- 肛瘘患者的护理查房
- 2023-2024学年河北省涿州市实验中学中考数学模试卷含解析
- 国防动员教案
- 手术室术中物品清点不清的应急预案演练流程及剧本
评论
0/150
提交评论