版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年山东省鄄城县高一上学期9月月考数学质量检测模拟试题一、单选题(8题*5分=40分)1.设集合,,(
)A. B. C. D.2.已知,,若集合,则的值为(
)A. B. C.1 D.23.集合,若,则满足条件的集合的个数为(
)A.4 B.5 C.7 D.84.王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”,其《从军行》传诵至今,“青海长云暗雪山,孤城遥望玉门关.黄沙百战穿金甲,不破楼兰终不还”,由此推断,其中最后一句“攻破楼兰”是“返回家乡”的(
)A.必要条件 B.充分条件C.充要条件 D.既不充分又不必要条件5.命题“”的否定是(
)A. B.C. D.6.已知,,且,则的最大值为(
)A.1 B. C. D.7.甲、乙两人同时于上周和本周到同一加油站给汽车加油两次,甲每次加油20升,乙每次加油200元,若上周与本周油价不同,则在这两次加油中,平均价格较低的是(
)A.甲 B.乙 C.一样低 D.不能确定8.对非空有限数集定义运算“”:表示集合A中的最小元素.现给定两个非空有限数集A,B,定义集合,我们称为集合A,B之间的“距离”,记为.现有如下四个命题:①若,则;
②若,则;③若,则;
④对任意有限集合A,B,C,均有.其中,真命题的个数为(
)A.1 B.2 C.3 D.4二、多选题(4题*5分=20分)9.下列说法正确的是(
)A.;B.雅安中学新高一全体学生可以构成一个集合;C.集合有两个元素;D.小于10的自然数按从大到小的顺序排列和按从小到大的顺序排列分别得到不同的两个集合.10.(多选)若{1,2}⊆B{1,2,3,4},则B=(
)A.{1,2} B.{1,2,3} C.{1,2,4} D.{1,2,3,4}11.已知,,,则下列命题为真命题的是()A.若,则 B.若且,则C.若,则 D.若,则12.某工艺厂用A、B两种型号不锈钢薄板制作矩形、菱形、圆3种图形模板,每个图形模板需要A、B不锈钢薄板及该厂2种薄板张数见下表矩形菱形圆总数A531055B12613125该厂签购制作矩形、菱形、圆3种模板分别为x,y,z()块.上述问题中不等关系表示正确为(
)A. B.C. D.三、填空题(4题*5分=20分)13.设集合且,则a的取值组成的集合是.14.为丰富学生课余生活,拓宽学生视野,某校积极开展社团活动,高一(1)班参加社团的学生有21人,参加社团的学生有18人,两个社团都参加的有7人,另外还有3个人既不参加社团也不参加社团,那么高一(1)班总共有学生人数为.15.若实数,满足,则的最小值为.16.如图,正方形的边长为,请利用,写出一个简练优美的含有a,b的不等式为,其中“=”成立的条件为.五、解答题(共70分)17.设为实数,集合,.(1)若,求,;(2)若,求实数的取值范围.18.已知,非空集合.(1)若是的必要条件,求的取值范围;(2)是否存在实数m,使是的充要条件?请说明理由.19.(1)已知实数,满足,,求和的取值范围(2)已知正实数,满足:,求的最小值20.已知,.(1)求的最小值;(2)求的最大值.21.(1)已知,比较与的大小(2)若命题“时,一次函数的图象在x轴上方”为真命题时,求的取值范围.22.已知集合(1)判断8,9,10是否属于集合A;(2)已知集合,证明:“”的充分条件是“”;但“”不是“”的必要条件;(3)写出所有满足集合A的偶数.1.C【分析】根据交集的知识求得正确答案.【详解】依题意.故选:C2.B【分析】利用集合相等,求出,再根据互异性求出的取值情况并检验即可.【详解】根据题意,,故,则,则,由集合的互异性知且,故,则,即或(舍),当时,,符合题意,所以.故选:B.3.D【分析】先判断集合A的元素个数,再利用集合的子集个数公式计算即可.【详解】,因为,所以满足条件的集合的个数为.故选:D.4.A【分析】利用充分必要条件判断即可得解.【详解】由题意可知:“返回家乡”则可推出“攻破楼兰”,故“攻破楼兰”是“返回家乡”必要条件,故选:A.5.D【分析】根据存在量词命题的否定是全称量词命题即得.【详解】因为存在量词命题的否定是全称量词命题,所以命题“”的否定是“”.故选:D.6.C【分析】利用基本不等式,即可乘积的最大值.【详解】,解得,当且仅当时等号成立,即,时,等号成立,所以的最大值为.故选:C7.B【分析】根据题意,分别求得甲乙两次加油的平均价格,结合作差比较,即可得到答案.【详解】设两次加油时的单价分别为元和元,且,则甲每次加油升,两次加油中,平均价格为元,乙每次加油元,两次加油中,平均价格为元,可得,所以乙的平均价格更低.故选:B.8.B【分析】根据题中条件可得①③正确,通过举反例可得②④错误.【详解】对于①,若,则A,B中最小的元素相同,则,故①为真命题;对于②,取集合,,满足,而,故②为假命题;对于③,若,则A,B中存在相同的元素,所以交集非空集,故③为真命题;对于④,取集合,,,可知,,,则不成立,故④为假命题.综上,真命题的个数为2个.故选:B9.BC【分析】区分的含义判断A;根据集合的定义判断B;根据一元二次方程有两个不相等的实数根判断C;根据集合元素的无序性判断D.【详解】对于A,0是一个数,是一个集合,二者不相等,A错误;对于B,根据集合定义知,雅安中学新高一全体学生可以构成一个集合,B正确;对于C,由于的判别式,故有两个不相等的实数根,故集合有两个元素,正确;对于D,集合的元素具有无序性,故小于10的自然数按从大到小的顺序排列和按从小到大的顺序排列分别得到的两个集合是同一个集合,D错误,故选:BC10.ABC【分析】根据子集与真子集的定义即可求解.【详解】∵{1,2}⊆B{1,2,3,4},∴B={1,2}或B={1,2,3}或B={1,2,4},故选:ABC11.ABC【分析】根据不等式的性质即可结合选项逐一求解.【详解】选项A,若成立则,所以,故选项A正确;选项B,由得,又因为,所以,所以,故选项B正确;选项C,因为,所以,所以,因为,所以两边同乘得,故选项C正确;选项D,因为,,,所以,即,故选项D不正确;故选:ABC.12.BC【分析】根据题意直接列不等式即可求解.【详解】因为每个矩形模板需要5张A薄板,每个菱形模板需要3张A薄板,每个圆模板需要10张A薄板,且共有55张A薄板,所以,因为每个矩形模板需要12张B薄板,每个菱形模板需要6张B薄板,每个圆模板需要13张B薄板,且共有125张B薄板,所以.故选:BC.13.【分析】由,可得,即可得到或,分别求解可求出答案.【详解】由题意,,①若,解得或,当时,集合中,,不符合集合的互异性,舍去;当时,,符合题意.②若,解得,,符合题意.综上,的值是-2或0.故答案为:.14.35【分析】求出只参加社团和只参加社团的人数,即可求出高一(1)班总共有学生人数.【详解】由题意,高一(1)班参加社团的学生有21人,参加社团的学生有18人,两个社团都参加的有7人,∴只参加社团的学生有(人),只参加社团的学生有(人),∵另外还有3个人既不参加社团也不参加社团,∴高一(1)班总共有学生人数为:(人)故答案为.15.##【分析】由题意设,则,可得,,化简所求利用基本不等式即可求解.【详解】因,则,即,令,则,所以,,所以,当且仅当,即时,等号成立.故的最小值为.故16.【分析】利用勾股定理结合已知条件即可求解.【详解】正方形的边长为,由勾股定理可得,,∵,∴,整理得,当且仅当取等号,故;.17.(1),或(2)【分析】(1)求出时集合B,再利用集合的运算即可求出与;(2)根据得出关于的不等式,由此求出实数m的取值范围.【详解】(1)集合,时,,所以,又因为,所以或,(2)由,得或,即或,所以实数m的取值范围是.18.(1)(2)不存在,理由见解析【分析】(1)根据必要条件的定义可知,根据集合之间的关系求解;(2)根据充要条件的定义可知,根据集合之间的关系求解.【详解】(1)由,解得,∴,∵是的必要条件,∴,∴,解得,故的取值范围为.(2)由(1)知,若是的充要条件,则,∴,解得,故这样的不存在.19.(1),;(2)9【分析】(1)应用不等式的性质计算组合的范围即可;(2)已知等式,应用常值代换法求出和的最小值.【详解】(1)因为,所以,所以
所以的取值范围是.因为,所以,因为,所以,所以的取值范围是.(2)因为,所以,当且仅当,即时,等号成立,所以的最小值为9.20.(1)4(2)【分析】(1)根据条件得到,再利用均值不值式即可求出结果;(2)根据条件得到,再利用均值不值式即可求出结果.【详解】(1)因为,所以,当且仅当时取等号,所以的最小值为.(2)因为,所以当且仅当,即时取等号,所以的最大值为.21.(1)当或时,;当且时,;当且时,.(2)或.【分析】(1)作差法可得,分类讨论即可得解;(2)把一次函数图象在x轴上方转化函数值恒为正,列不等式求解即可.【详解】(1)当或时,有,或,所以,即;当且时,有,所以,即;当且时,有,所以,即.(2)因为命题“时,一次函数的图象在x轴上方”为真命题,所以,所以或,即的取值范围为或.22.(1),,(2)证明见解析(3)【分析】(1)由,即可证,若,而,列方程组判断是否存在整数解,即可判断10是否属于A.(2)由,结合集合A的描述知,由(1),而,即可证结论;(3)由集合A的描述:,讨论m,n同奇或同偶、一奇一偶,即可确定的奇偶性,进而写出所有满足集合A的偶数.【详解】(1),,故,,假设,,则,且,由,得或,显然均无整数解,∴,综上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年沪教版高二数学下册月考试卷816
- 2024年粤教版七年级数学下册阶段测试试卷含答案704
- 五年级数学(小数乘除法)计算题专项练习及答案汇编
- 律师参与行政听证考核试卷
- 2024年度月嫂服务与育儿顾问联合合同3篇
- 小吃店品牌形象与视觉识别系统设计考核试卷
- 2024年度堤坝工程智能控制系统安装合同3篇
- 2024年员工住宿区安全检查与整改服务合同范例3篇
- 《参苓白术散加味对比卡培他滨维持治疗脾虚湿滞型晚期大肠癌的临床疗效观察》
- 文化用品租赁业务库存优化考核试卷
- 2025山东潍坊光明电力服务限公司招聘142人管理单位笔试遴选500模拟题附带答案详解
- 《诊断教学胸腔积液》课件
- 山东力明科技职业学院《互换性与测量技术》2023-2024学年第一学期期末试卷
- 河南省洛阳市2023-2024学年高二上学期期末考试数学试题(解析版)
- 《格力电器公司的战略管理研究》5800字(论文)
- 建设银行2024年信贷政策与结构调整方案
- 土地托管协议范本
- 2023-2024学年新疆吐鲁番市高二上学期期末生物试题(解析版)
- 黑龙江省佳木斯二中2024-2025学年高一上学期期中考试化学试题(无答案)
- 安装通风管道安全协议书
- 2024人力行政年终总结
评论
0/150
提交评论