2022年内蒙古鄂托克旗中考数学一模试卷_第1页
2022年内蒙古鄂托克旗中考数学一模试卷_第2页
2022年内蒙古鄂托克旗中考数学一模试卷_第3页
2022年内蒙古鄂托克旗中考数学一模试卷_第4页
2022年内蒙古鄂托克旗中考数学一模试卷_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年内蒙古鄂托克旗中考数学一模试卷学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意:本试卷包含Ⅰ、Ⅱ两卷。第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。答案写在试卷上均无效,不予记分。一、选择题1、实数-2019的绝对值是()A. B.-2019C.±2019 D.2019 2、近年来,国家重视精准扶贫,收效显著.据统计约有65000000人脱贫,把65000000用科学记数法表示,正确的是()A.0.65×108 B.6.5×107 C.6.5×108 D.65×106 3、下列运算正确的是()A.a2+2a=3a3 B.(-2a3)2=4a5C.(a+2)(a-1)=a2+a-2 D.(a+b)2=a2+b2 4、受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1 B.1,1.5 C.1,2 D.1,1 5、等式=成立的x的取值范围在数轴上可表示为()A. B.C. D. 6、如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是()A.∠CBD=30°B.S△BDC=AB2C.点C是△ABD的外心D.sin2A+cos2D=1 7、下列说法中,正确的有()①估计的值在7和8之间;②六边形的内角和是外角和的2倍;③2的相反数是-2;④若a>b,则a-b>0.它的逆命题是真命题;⑤一个角是126°43',则它的补角是53°17';A.1个 B.2个 C.3个 D.4个 8、如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1 B.2 C.3 D.4 9、如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(2,3),B(6,1)两点,当k1x+b<时,x的取值范围为()A.x<2 B.2<x<6 C.x>6 D.0<x<2或x>6 10、如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1.正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处.将正方形ABCD沿l向右平移,直到点A与点N重合为止.记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为()A. B.C. D. 二、填空题1、定义运算“※”,规定x※y=ax2+by,其中a,b为常数,且1※2=5,2※1=6,则2※3=______.2、如图,一种滑翔伞的形状是左右成轴对称的四边形ABCD,其中∠BAD=150°,∠B=40°,则∠BCD的度数是______.3、已知一元二次方程x2+mx+m-1=0有两个相等的实数根,则m=______.4、如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为______.5、如图,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC为正三角形,给出下列结论,①CB=2CE,②tan∠B=,③∠ECD=∠DCB,④若AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,则d12+d22的最小值是3.其中正确的结论是______(填写正确结论的序号).6、如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:一小球在编号为3的顶点上时,那么它应走3个边长,即从3→4→5→1为第一次“移位”,这时它到达编号为1的顶点;然后从1→2为第二次“移位”.若这个小球从编号为2的顶点开始,第2019次“移位”后,则它所处顶点的编号是______.三、解答题1、(1)计算:(2)先化简,再求值:,其中.______2、近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为______度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?______3、阅读材料:在一个三角形中,各边和它所对角的正弦的比相等,==,利用上述结论可以求解如下题目:在△ABC中,∠A、∠B、∠C的对边分别为a,b,c.若∠A=45°,∠B=30°,a=6,求b.解:在△ABC中,∵=∴b====3.理解应用:如图,甲船以每小时30海里的速度向正北方向航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,且乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟到达A2时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10海里.(1)判断△A1A2B2的形状,并给出证明;(2)求乙船每小时航行多少海里?______4、如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.______5、如图,已知AB是⊙O的直径,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.______6、某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.(1)求甲、乙两仓库各存放原料多少吨?(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a元/吨(10≤a≤30),从乙仓库到工厂的运价不变,设从甲仓库运m吨原料到工厂,请求出总运费W关于m的函数解析式(不要求写出m的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m的增大,W的变化情况.______7、如图①,已知抛物线y=ax2+bx+c的图象经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.______8、问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为______;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D作DE⊥AB交于点E,又测得DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)______

2019年内蒙古鄂托克旗中考数学一模试卷参考答案一、选择题第1题参考答案:D解:实数-2019的绝对值=|-2019|=2019,故选:D.当a是负有理数时,a的绝对值是它的相反数-a.本题主要考查了绝对值,解题时注意:一个负数的绝对值是它的相反数.---------------------------------------------------------------------第2题参考答案:B解:65000000=6.5×107.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.---------------------------------------------------------------------第3题参考答案:C解:A、错误.不是同类项不能合并;B、错误.应该是(-2a3)2=4a6;C、正确;D、错误.应该是(a+b)2=a2+2ab+b2;故选:C.根据多项式的乘法法则、幂的乘方与积的乘方、完全平方公式、合并同类项法则一一判断即可;本题考查多项式的乘法法则、幂的乘方与积的乘方、完全平方公式、合并同类项法则等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.---------------------------------------------------------------------第4题参考答案:B解:由表格可得,全班学生平均每天阅读时间的中位数和众数分别是1、1.5,故选:B.根据表格中的数据可知七年级2班有30人,从而可以得到全班学生平均每天阅读时间的中位数和众数,本题得以解决.本题考查众数、加权平均数、中位数,解答本题的关键是明确题意,会求一组数据的众数和中位数.---------------------------------------------------------------------第5题参考答案:B解:由题意可知:解得:x≥3故选:B.根据二次根式有意义的条件即可求出x的范围.本题考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.---------------------------------------------------------------------第6题参考答案:D解:由作图可知:AC=AB=BC,∴△ABC是等边三角形,由作图可知:CB=CA=CD,∴点C是△ABD的外心,∠ABD=90°,BD=AB,∴S△ABD=AB2,∵AC=CD,∴S△BDC=AB2,故A、B、C正确,故选:D.根据等边三角形的判定方法,直角三角形的判定方法以及等边三角形的性质,直角三角形的性质一一判断即可;本题考查作图-基本作图,线段的垂直平分线的性质,三角形的外心等知识,直角三角形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.---------------------------------------------------------------------第7题参考答案:D解:①8<<9,即在8到9之间,故错误;②六边形的内角和是外角和的2倍,正确;③2的相反数是-2,正确;④若a>b,则a-b>0.它的逆命题是真命题,正确;⑤一个角是126°43',则它的补角是53°17,正确,正确的有4个,故选D.分别用多边形的知识、实数及余、补角的定义分别判断后即可确定正确的选项.本题考查了命题与定理的知识,解题的关键是多边形的知识、实数及余、补角的定义,难度不大.---------------------------------------------------------------------第8题参考答案:D解:(1)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(2)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(3)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(4)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴S1+S2=S3.综上,可得面积关系满足S1+S2=S3图形有4个.故选:D.根据直角三角形a、b、c为边,应用勾股定理,可得a2+b2=c2.(1)第一个图形中,首先根据等边三角形的面积的求法,表示出3个三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3.(2)第二个图形中,首先根据圆的面积的求法,表示出3个半圆的面积;然后根据a2+b2=c2,可得S1+S2=S3.(3)第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3.(4)第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积;然后根据a2+b2=c2,可得S1+S2=S3.(1)此题主要考查了勾股定理的应用,要熟练掌握,解答此题的关键是要明确:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.(2)此题还考查了等腰直角三角形、等边三角形、圆以及正方形的面积的求法,要熟练掌握.---------------------------------------------------------------------第9题参考答案:D解:由图象可知,当k1x+b<时,x的取值范围为0<x<2或x>6.故选:D.根据图象直线在反比例函数图象的下方部分的对应的自变量的值即为所求.此题考查了反比例函数与一次函数的交点问题以及待定系数法求解析式.此题难度适中,注意掌握数形结合思想与方程思想的应用.---------------------------------------------------------------------第10题参考答案:A解:当0≤x≤1时,y=2x,当1<x≤2时,y=2,当2<x≤3时,y=-2x+6,∴函数图象是A,故选:A.当0≤x≤1时,y=2x,当1<x≤2时,y=2,当2<x≤3时,y=-2x+6,由此即可判断;本题考查动点问题函数图象、分段函数等知识,解题的关键是理解题意,学会构建函数关系式解决问题,属于中考常考题型.二、填空题---------------------------------------------------------------------第1题参考答案:10解:根据题意得:,解得:,则2※3=4+6=10.故答案为:10已知等式利用新定义化简求出a与b的值,原式计算即可得到结果.此题考查了解二元一次方程组,弄清题中的新定义是解本题的关键.---------------------------------------------------------------------第2题参考答案:130°解:∵一种滑翔伞的形状是左右成轴对称的四边形ABCD,其中∠BAD=150°,∠B=40°,∴∠D=40°,∴∠BCD=360°-150°-40°-40°=130°.故答案为:130°根据题意滑翔伞的形状是左右成轴对称的四边形ABCD,得出∠D=40°,再利用四边形内角和定理求出∠BCD=360°-150°-40°-40°,即可得出答案.此题主要考查了轴对称的性质以及多边形的内角和定理,根据题意得出∠D=40°,再利用四边形内角和定理是解决问题的关键.---------------------------------------------------------------------第3题参考答案:2解:∵关于x的一元二次方程x2-mx+m-1=0有两个相等的实数根,∴△=b2-4ac=m2-4×1×(m-1)=m2-4m+4=(m-2)2=0,∴m=2,故答案为:2.首先根据原方程根的情况,利用根的判别式求出m的值即可.此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.---------------------------------------------------------------------第4题参考答案:解:延长AB至M,使BM=AE,连接FM,∵四边形ABCD是菱形,∠ADC=120°∴AB=AD,∠A=60°,∵BM=AE,∴AD=ME,∵△DEF为等边三角形,∴∠DAE=∠DFE=60°,DE=EF=FD,∴∠MEF+∠DEA═120°,∠ADE+∠DEA=180°-∠A=120°,∴∠MEF=∠ADE,∴在△DAE和△EMF中,∴△DAE≌EMF(SAS),∴AE=MF,∠M=∠A=60°,又∵BM=AE,∴△BMF是等边三角形,∴BF=AE,∵AE=t,CF=2t,∴BC=CF+BF=2t+t=3t,∵BC=4,∴3t=4,∴t=故答案为:.或连接BD.根据SAS证明△ADE≌△BDF,得到AE=BF,列出方程即可.延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF是等边三角形,再利用菱形的边长为4求出时间t的值.本题主要考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质等知识,解题的关键是运用三角形全等得出△BMF是等边三角形.---------------------------------------------------------------------第5题参考答案:①③④解:∵D是AB中点∴AD=BD∵△ACD是等边三角形,E是AD中点∴AD=CD,∠ADC=60°=∠ACD,CE⊥AB,∠DCE=30°∴CD=BD∴∠B=∠DCB=30°,且∠DCE=30°,CE⊥AB∴∠ECD=∠DCB,BC=2CE,tan∠B=故①③正确,②错误∵∠DCB=30°,∠ACD=60°∴∠ACB=90°若AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,∴四边形PMCN是矩形∴MN=CP∵d12+d22=MN2=CP2∴当CP为最小值,d12+d22的值最小∴根据垂线段最短,则当CP⊥AB时,d12+d22的值最小此时:∠CAB=60°,AC=2,CP⊥AB∴CP=∴d12+d22=MN2=CP2=3即d12+d22的最小值为3故④正确故答案为①③④由题意可得△BCE是含有30°的直角三角形,根据含有30°的直角三角形的性质可判断①②③,易证四边形PMCN是矩形,可得d12+d22=MN2=CP2,根据垂线段最短,可得CP的值即可求d12+d22的最小值,即可判断④.本题考查了解直角三角形,等边三角形的性质和判定,利用垂线段最短求d12+d22的最小值是本题的关键.---------------------------------------------------------------------第6题参考答案:1解:根据题意,小球从编号为2的顶点开始,第1次移位到点4,第2次移位到达点3,第3次移位到达点1,第4次移位到达点2,…,依此类推,4次移位后回到出发点,∵2019÷4=504…3,∴第2019次“移位“后,它所处顶点的编号与第3次移位到的编号相同,为1,故答案为:1.根据“移位”的特点确定出前几次的移位情况,从而找出规律,然后解答即可.本题对图形变化规律的考查,根据“移位”的定义,找出每4次移位为一个循环组进行循环是解题的关键.三、解答题---------------------------------------------------------------------第1题参考答案:解:(1)原式=-4-1+1+2×=-3;(2)原式=÷=÷=•=,当x=+1时,原式==.(1)根据负指数幂的性质、0指数幂的性质以及特殊角的锐角三角函数值进行计算;(2)首先根据分式的四则混合运算顺序进行计算化简,然后代值计算.此题综合考查了幂运算的性质、特殊角的锐角三角函数值、分式的混合运算.在求分式的值时,要把分式化到最简,然后代值计算.---------------------------------------------------------------------第2题参考答案:108解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),补全的条形统计图如右图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×=108°,故答案为:108;(3)1600×=928(名),答:使用A和B两种支付方式的购买者共有928名.(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.---------------------------------------------------------------------第3题参考答案:解:(1)△A1A2B2是等边三角形,理由如下:连结A1B2.∵甲船以每小时30海里的速度向正北方向航行,航行20分钟到达A2,∴A1A2=30×=10,又∵A2B2=10,∠A1A2B2=60°,∴△A1A2B2是等边三角形;(2)过点B作B1N∥A1A2,如图,∵B1N∥A1A2,∴∠A1B1N=180°-∠B1A1A2=180°-105°=75°,∴∠A1B1B2=75°-15°=60°.∵△A1A2B2是等边三角形,∴∠A2A1B2=60°,A1B2=A1A2=10,∴∠B1A1B2=105°-60°=45°.在△B1A1B2中,∵A1B2=10,∠B1A1B2=45°,∠A1B1B2=60°,由阅读材料可知,=,解得B1B2==,所以乙船每小时航行:÷=20海里.(1)先根据路程=速度×时间求出A1A2=30×=10,又A2B2=10,∠A1A2B2=60°,根据有一个角是60°的等腰三角形是等边三角形即可得出△A1A2B2是等边三角形;(2)先由平行线的性质及方向角的定义求出∠A1B1B2=75°-15°=60°,由等边三角形的性质得出∠A2A1B2=60°,A1B2=A1A2=10,那么∠B1A1B2=105°-60°=45°.然后在△B1A1B2中,根据阅读材料可知,=,求出B1B2的距离,再由时间求出乙船航行的速度.本题考查了解直角三角形的应用-方向角问题,等边三角形的判定与性质,方向角的定义,锐角三角函数的定义,学生的阅读理解能力以及知识的迁移能力.正确理解阅读材料是解题的关键.---------------------------------------------------------------------第4题参考答案:证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA中,,∴Rt△AFE≌Rt△BCA(HL),∴AC=EF;(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.(1)首先由Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又由△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后证得△AFE≌△BCA,继而证得结论;(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.此题考查了平行四边形的判定、等边三角形的性质以及全等三角形的判定与性质.注意证得Rt△AFE≌Rt△BCA是关键.---------------------------------------------------------------------第5题参考答案:解:(1)连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直径,∴∠ACB=90°,∴∠OCA+∠OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半径,∴CD是⊙O的切线(2)设⊙O的半径为r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=2易求S△AOC=×2×1=S扇形OAC==∴阴影部分面积为-(1)连接OC,易证∠BCD=∠OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切线(2)设⊙O的半径为r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分别计算△OAC的面积以及扇形OAC的面积即可求出影响部分面积本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,需要学生灵活运用所学知识.---------------------------------------------------------------------第6题参考答案:解:(1)设甲仓库存放原料x吨,乙仓库存放原料y吨,由题意,得,解得,甲仓库存放原料240吨,乙仓库存放原料210吨;(2)由题意,从甲仓库运m吨原料到工厂,则从乙仓库云原料(300-m)吨到工厂,总运费W=(120-a)m+100(300-m)=(20-a)m+30000;(3)①当10≤a<20时,20-a>0,由一次函数的性质,得W随m的增大而增大,②当a=20是,20-a=0,W随m的增大没变化;③当20≤a≤30时,则20-a<0,W随m的增大而减小.(1)根据甲乙两仓库原料间的关系,可得方程组;(2)根据甲的运费与乙的运费,可得函数关系式;(3)根据一次函数的性质,要分类讨论,可得答案.本题考查了二元一次方程组及一次函数的性质,解(1)的关键是利用等量关系列出二元一次方程组,解(2)的关键是利用运费间的关系得出函数解析式;解(3)的关键是利用一次函数的性质,要分类讨论.---------------------------------------------------------------------第7题参考答案:解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2-4x+3;(2)如图2,∵△AOE的面积是定值,所以当△OEP面积最大时,四边形AOPE面积最大,设P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四边形AOPE=S△AOE+S△POE,=×3×3+PG•AE,=+×3×(-m2+5m-3),=-+,=-(m-)2+,∵-<0,∴当m=时,S有最大值是;(3)分四种情况:①当P在对称轴的左边,且在x轴下方时,如图3,过P作MN⊥y轴,交y轴于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2-4m+3),则-m2+4m-3=2-m,解得:m=(舍)或,∴P的坐标为(,);②当P在对称轴的左边,且在x轴上方时,如图3,同理得:2-m=m2-4m+3,解得:m1=(舍)或m2=,③当P在对称轴的右边,且在x轴下方时,如图4,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ON

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论