




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中函数解析式的十种方法在高中数学学习中,会遇到求函数解析式的一类题,这里是指已知或,求或,或已知或,求或等复合函数的解析式,这些问题是学生在学习中感到棘手的问题。解决这些问题是否有一套有效的方法可循呢?回答是肯定的。这类题在现行的高中数学教科书中几乎没有,但在一些二类教材如《目标测试》等书中有很多类似题,它与课本上的函数这一内容关系密切,并且具有一定的规律性,故就有一些有效的解题方法,根据本人的教学心得整理如下:一、定义法:例1:设,求.=例2:设,求.解:设例3:设,求.解:又故例4:设.解:.二、待定系数法:(主要用于二次函数)例5:已知,求.解:显然,是一个一元二次函数。设则又比较系数得:解得:三、换元(或代换)法:例6:已知求.解:设则则例7:设,求.解:令又例8:若(1)在(1)式中以代替得即(2)又以代替(1)式中的得:(3)例9:设,求。解:(1)用来代替,得(2)由例10:已知,求.解:设,则即代入已知等式中,得:(四)配凑法已知复合函数的表达式,要求的解析式时,若表达式右边易配成的运算形式,则可用配凑法,使用配凑法时,要注意定义域的变化。例3:已知求的解析式。分析:可配凑成可用配凑法解:由令则即当然,上例也可直接使用换元法令则得即由此可知,求函数解析式时,可以用配凑法来解决的,有些也可直接用换元法来求解。例4:已知求.分析:此题直接用换元法比较繁锁,而且不易求出来,但用配凑法比较方便。解析:由令由即得即:实质上,配凑法也缊含换元的思想,只是不是首先换元,而是先把函数表达式配凑成用此复合函数的内函数来表示出来,在通过整体换元。和换元法一样,最后结果要注明定义域。(五)函数方程组法。函数方程组法适用的范围是:题高条件中,有若干复合函数与原函数混合运算,则要充分利用变量代换,然后联立方程组消去其余部分。例5:设满足求的解析式。分析:要求可消去,为此,可根据题中的条件再找一个关于与的等式,通过解方程组达到消元的目的。解析:………①显然,,将换成得……………..②由消去,得小结:函数方程组法适用于自变量的对称规律。互为倒数,如f(x)、;互为相反数,如f(x)、f(-x),通过对称代换构造一个对称方程组,解方程组即得f(x)的解析式。例10:已知,求.解:设,则即代入已知等式中,得:六、特殊值法:(赋值类求抽象函数)例11:设是定义在N上的函数,满足,对于任意正整数,均有,求.解:由,设得:即:在上式中,分别用代替,然后各式相加可得:七.利用给定的特性求解析式.题6.设是偶函数,当x>0时,,求当x<0时,的表达式.练习6.对x∈R,满足,且当x∈[-1,0]时,求当x∈[9,10]时的表达式.八、累加法:(核心思想与求数列的通项公式相似)例12:若,且当,求.解:递推得:……以上个等式两边分别相加,得:九、归纳法:例13:已知,求.解:………………,依此类推,得再用数学归纳法证明之。例14:设,记,求.十、微积分法:(当你学了导数和微积分之后,就会用到,不过平时的考题还是比较少出现的,多见识下各种题型对你有帮助的。)例1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年现代车辆工程师考试试卷及答案
- 2025年体育教育与训练专业技能测试试题及答案
- Isopaucifloral-F-racemic-Isopaucifloral-F-生命科学试剂-MCE
- Gaboxadol-hydrochloride-Standard-Lu-02-030-hydrochloride-Standard-生命科学试剂-MCE
- 2025年汽车电子技术专业考试试题及答案
- 2025年电子商务师考试理论知识试卷及答案
- 零售商店管理系统开发协议
- 《小说的叙事技巧:高二语文文学鉴赏教学教案》
- 遥感技术应用于农业生产经营的合作协议
- 六年级状物作文海棠花500字(13篇)
- 常见急救知识培训课件
- 小学数学北师大四年级上册二线与角《线的认识》军乐小学周蓉
- (人教版教材)初中地理《巴西》完整版
- 律师事务所业务操作规程
- Q∕SY 05267-2016 钢质管道内检测开挖验证规范
- MW机组扩建工程常熟施工组织设计
- 成败归因理论PPT课件
- 湘鲁版六年级下册期末英语试卷
- 中国医师协会专科会员入会申请表
- 入无分别总持经(敦煌本)简体+入无分别法门经(宋)
- 海绵城市详解ppt课件
评论
0/150
提交评论