版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PLUMMETINGSOLAR,
WIND,
ANDBATTERY
COSTS
CANACCELERATE
OURCLEAN
ELECTRICITYFUTUREJUNE
2020EXECUTIVESUMMARYGlobalcarbonemissionsmustbehalvedby
2030to
limitwarmingto
1.5°Candavoid
catastrophicclimateimpacts.Mostexistingstudies,however,
examine2050astheyear
thatdeepdecarbonizationofelectricpower
systems
canbeachieved—atimelinethatwouldalsohinderdecarbonizationofthebuildings,industrial,andtransportationsectors.Inlightofrecenttrends,thesestudiespresentoverly
conservativeestimatesofdecarbonizationpotential.Plummetingcostsforwindandsolarenergyhave
dramaticallychangedtheprospectsforrapid,cost-effectiveexpansionofrenewableenergy.
At
thesametime,batteryenergystoragehasbecomeaviableoptionforcost-effectivelyintegratinghighlevels
ofwindandsolargenerationintoelectricitygrids.Thisreportusesthelatestrenewableenergyandbatterycostdatato
demonstratethetechnicalandeconomicfeasibilityofachieving90%clean(carbon-free)electricityintheUnitedStatesby
2035.Two
centralcasesare
simulatedusingstate-of-the-artcapacity-expansionandproduction-costmodels:TheNoNew
Policycaseassumescontinuationofcurrentstateandfederalpolicies;andthe90%Cleancaserequiresthata90%cleanelectricityshareisreachedby
2035.2035
THE
REPORT|
2KEY
FINDINGSTable
ES-1
shows
thereport’sfindingsataglance,andthefollowingdiscussionexpandsonthesefindings.CURRENTGRID
(2019)NO
NEWPOLICY
(2035)90%
CLEAN(2035)TABLEES-1.Highly
Decarbonized
GridDependable
GridU.S.
Power
SystemCharacteristics
by
CaseModeled
in
the
ReportElectricity
CostReductions---Feasible
Scale-UpHighest
Number
of
JobsSupportedLargest
EnvironmentalSavings-STRONG
POLICIESAREREQUIREDTO
CREATE
A
90%CLEANGRIDBY
2035The90%Cleancaseassumesstrongpoliciesdrive90%cleanelectricityby
2035.TheNoNew
Policycaseachievesonly55%cleanelectricityin2035(FigureES-1).AcompanionreportfromEnergyInnovationidentifiesinstitutional,market,andregulatorychangesneededto
facilitatetherapidtransformationto
a90%cleanpower
sectorintheUnitedStates.2035
THE
REPORT|
3ANNUAL
GENERATION
|
90%
CLEANANNUAL
GENERATION
|
NO
NEWPOLICY50005000SOLARSOLAR40004000WINDWINDHYDROGEOTHERMALBIOPOWERHYDRO30003000200010000GEOTHERMALNUCLEARNUCLEARBIOPOWEROTHER200010000OTHERGASGASCOALCOAL202O202520302035202O202520302035THE90%CLEANGRIDISDEPENDABLE
WITHOUTCOALPLANTS
ORNEWNATURAL
GAS
PLANTSFIGURE
ES-1.Generation
Mixes
for
the
90%
CleanCase
(left)
and
No
New
Policy
Case(right),
2020–2035Retainingexistinghydropower
andnuclearcapacity(afteraccountingforplannedretirements),andmuchoftheexistingnaturalgascapacitycombinedwithnew
batterystorage,issufficientto
meetU.S.electricitydemanddependably(i.e.,every
houroftheyear)witha90%cleangridin2035.Underthe90%Cleancase,allexistingcoalplantsare
retiredby
2035,andnonew
fossilfuelplantsare
built.Duringnormalperiodsofgenerationanddemand,wind,solar,
andbatteriesprovide70%ofannualgeneration,whilehydropower
andnuclearprovide20%.Duringperiodsofvery
highdemandand/or
very
lowrenewablegeneration,existingnaturalgas,hydropower,
andnuclearplantscombinedwithbatterystoragecost-effectivelycompensateformismatchesbetweendemandandwind/solargeneration.Generationfromnaturalgasplantsconstitutesabout10%oftotalannualelectricitygeneration,whichisabout70%lower
thantheirgenerationin2019.ELECTRICITYCOSTS
FROMTHE90%CLEANGRIDARELOWER
THANTODAY’S
COSTSWholesaleelectricitycosts,whichincludethecostofgenerationplusincrementaltransmissioninvestments,are
about10%lowerin2035underthe90%Cleancasethantheyare
today,
mainlyowingto
low
renewableenergyandbatterycosts(FigureES-2).Pervasivenessoflow-costrenewableenergyandbatterystorageacrosstheUnitedStatesrequiresinvestmentmainlyintransmissionspursconnectingrenewablegenerationto
existing2035
THE
REPORT|
4high-capacitytransmissionlinesorloadcenters.Hence,additionaltransmission-relatedcostsandsitingconflictsare
modest.Relyingonnaturalgasforonly10%ofgenerationavoidslargeinvestmentsforinfrequentlyusedcapacity,
helpingto
avoid
majornewstranded-assetcosts.Retainingnaturalgasgenerationaverts
theneedto
buildexcess
renewableenergyandlong-durationstoragecapacity—helpingachieve90%cleanelectricitywhilekeepingcostsdown.Whilestilllower
thantoday’s
costs,wholesaleelectricitycostsare
12%higherunderthe90%CleancasethanundertheNoNew
Policycasein2035.However,
thiscomparisondoesnotaccountforthevalueofemissionsreductionsorjobcreationunderthe90%Cleancase.8070605040302010080706050403020100NO
NEW
POLICYW/
ENV
COST90%
CLEANW/
ENV
COST90%
CLEANW/O
ENV
COSTNO
NEW
POLICYW/O
ENV
COST202O202520302035202O202520302035FIGURE
ES-2.THE90%CLEANGRIDAVOIDS
$1.2TRILLIONINHEALTH
ANDENVIRONMENTAL
DAMAGES,
INCLUDING
85,000
PREMATUREDEATHS,
THROUGH2050Wholesale
Electricity
Costswith
(left)
and
without
(right)Environmental
Costs,
forthe
90%
Clean
and
No
NewPolicy
CasesThe90%CleancasenearlyeliminatesemissionsfromtheU.S.power
sectorby
2035,resultinginenvironmentalandhealthbenefitslargelydrivenby
reducedmortalityrelatedto
electricitygeneration(FigureES-3).ComparedwiththeNoNew
Policycase,the90%Cleancasereducescarbondioxide(CO
)emissionsby288%by
2035.Italsoreducesexposureto
fineparticulate(PM
)2.5matterby
reducingnitrogenoxide(NO
)andsulfurdioxide(SO
)x2emissionsby
96%and99%,respectively.1
Asaresult,the90%Cleancaseavoids
over
$1.2trillioninhealthandenvironmentalcosts,including85,000avoidedprematuredeaths,through2050.Thesesavingsequateroughlyto
2cents/kWhofwholesale1PrimaryPM2.5
emissionsreductionsarenotestimatedby
themodel,resultinginaconservativeestimateofreducedPM2.5
exposure.2035
THE
REPORT|
5electricitycosts,whichmakesthe90%Cleancasethelowest-net-costoptionwhenenvironmentalandhealthcostsare
considered.CO
EMISSIONSSO
EMISSIONSNO
EMISSIONS22X(MILLION
TONS/YR)(MILLION
TONS/YR)(MILLION
TONS/YR)20001.21.2NO
NEW
POLICY1800160014001200NO
NEW
POLICYNO
NEW
POLICY1.01.00.80.60.80.6100090%
CLEAN80090%
CLEAN90%
CLEAN0.40.20.00.40.20.06004002000FIGURE
ES-3.Emissions
of
CO
,
SO
,
and
NO
in
the
90%
Clean
and
No
New
Policy
Cases,
2020–203522xSCALING-UPRENEWABLES
TO
ACHIEVE
90%CLEANENERGYBY
2035
ISFEASIBLETo
achievethe90%Cleancaseby
2035,1,100
GW
ofnew
windandsolargenerationmustbebuilt,averagingabout70
GW
peryear
(FigureES-4).RecentU.S.precedentsfornaturalgasandwind/solarexpansionsuggestthatarenewableenergybuildoutofthismagnitudeischallengingbutfeasible.New
renewableresourcescanbebuiltcost-effectivelyinallregionsofthecountry.2035
THE
REPORT|
6CUMULATIVE
NEW
CAPACITY
ADDITIONS1400Battery
StorageSolarWind120010008006004002000FIGURE
ES-4.Cumulative
New
Capacity
Additionsin
the
90%
Clean
Case,
2020–2035202O202520302035THE90%CLEANGRIDCANSIGNIFICANTLY
INCREASEENERGY-SECTOR
EMPLOYMENTThe90%Cleancasesupportsatotalof29millionjob-yearscumulativelyduring2020–2035.Employmentrelatedto
theenergysectorincreasesby
approximately8.5millionnetjob-years,asincreasedemploymentfromexpandingrenewableenergyandbatterystoragemorethanreplaceslostemploymentrelatedto
decliningfossilfuelgeneration.TheNoNew
Policycaserequiresone-thirdfewer
jobs,foratotalof20millionjob-yearsover
thestudyperiod.Thesejobsincludedirect,indirect,andinducedjobsrelatedto
construction,manufacturing,operationsandmaintenance,andthesupplychain.Overall,the90%Cleancasesupportsover
500,000morejobseachyear
comparedtotheNoNew
Policycase.ACCELERATING
THE
CLEANENERGY
FUTUREEstablishingatargetyear
of2035,ratherthanthetypical2050target,helpsalignexpectationsforpower-sectordecarbonizationwithclimaterealitieswhileinformingthepolicydialogueneededto
achievesuchanambitiousgoal.Aimingfor90%cleanelectricity—ratherthan100%—by2035isalsoimportantforenvisioningrapid,cost-effectivedecarbonization.By
2035,emergingtechnologiessuchasfirm,low-carbonpower
shouldbematureenoughto
beginto
replacetheremainingnaturalgasgenerationasthenationacceleratestoward
100%,cross-sectordecarbonization.Reaching90%zero-carbonelectricityintheUnitedStatesby
2035wouldcontributea27%reductionineconomy-widecarbonemissionsfrom2010levels.2035
THE
REPORT|
7TABLE
OFCONENTSExecutive
Summary1.
Introduction21213162.
Methods
and
Data
Summary3.
Key
Findings3.1
StrongPoliciesAreRequiredtoCreatea90%CleanGridby
2035163.2
The90%CleanGridIsDependablewithoutCoalPlantsorNew
NaturalGasPlants172227283.3
ElectricityCostsfromthe90%CleanGridAreLower
thanToday’s
Costs3.4
Scaling-UpRenewablesto
Achieve90%CleanEnergyby
2035IsFeasible3.5
The90%CleanGridCanSignificantlyIncreaseEnergy-SectorEmployment3.6
The90%CleanGridAvoids
$1.2TrillioninHealthandEnvironmentalDamages,Including85,000PrematureDeaths,Through20503034364.
Caveats
and
Future
WorkReferencesFunding
was
provided
bythe
MacArthur
Foundation.NAMESANDAFFILIATIONS
OFAUTHORS
ANDTECHNICALREVIEWCOMMITTEEAmolPhadke,1*UmedPaliwal,1
NikitAbhyankar,1
Taylor
McNair,2BenPaulos,3
DavidWooley,1*RicO’Connell2*1
Goldman
School
of
Public
Policy,
University
of
California
Berkeley,
2
GridLab,3
PaulosAnalysis.
*
Corresponding
AuthorsBeloware
themembersoftheTechnical
Review
Committee(TRC).TheTRCprovidedinputandguidancerelatedto
studydesignandevaluation,butthecontentsandconclusionsofthereport,includinganyerrorsandomissions,are
thesoleresponsibilityoftheauthors.TRCmemberaffiliationsinnowayimplythatthoseorganizationssupportorendorsethisworkinanyway.SoniaAggarwal,Energy
InnovationMarkAhlstrom,Energy
Systems
Integration
GroupSteve
Beuning,Holy
Cross
EnergyAaronBloom,Energy
Systems
Integration
GroupSeverinBorenstein,Haas
School
of
Business,
University
ofCalifornia
BerkeleyBenHobbs,Johns
Hopkins
UniversityAidanTuohy,
Electric
Power
Research
InstituteACKNOWLEDGEMENTSThefollowingpeopleprovidedinvaluabletechnicalsupport,input,andassistanceinmakingthisreportpossible.PhoebeSweet,CourtneySt.John,ChelseaEakin,LindsayHamilton,Climate
NexusSilvioMarcacci,Energy
InnovationJarettZuboy,
independent
contractorBetonyJones,Inclusive
EconomicsSimoneCobb,Goldman
School
of
Public
Policy,
University
ofCalifornia
BerkeleyManinderThindandJulianMarshall,University
of
WashingtonYinongSun,National
Renewable
Energy
LaboratoryZaneSelvans,Catalyst
CooperativeAppendices,
supportingreports,
and
datavisualizations
can
be
found
at2035We
are
thankfulto
theNationalRenewableEnergyLaboratoryformakingitsReEDSmodelpubliclyavailable,aswellasalltheirscenariosandtheAnnualTechnology
Baseline.2035
THE
REPORT|
9ABOUTUNIVERSITYOFCALIFORNIA
BERKELEYGOLDMANSCHOOLOFPUBLICPOLICYABOUTGRIDLABGridLabisaninnovativenon-profitthatprovidestechnicalgridexpertisetoenhancepolicydecision-makingandto
ensurearapidtransitionto
areliable,cost-effective,andlow-carbonfuture.TheCenterforEnvironmentalPublicPolicy,
housedatUCBerkeley’sGoldmanSchoolofPublicPolicy,
takesanintegratedapproachto
solvingenvironmentalproblemsandsupportsthecreationandimplementationofpublicpoliciesbasedonexactinganalyticalstandardsthatcarefullydefineproblemsandmatchthemwiththemostimpactfulsolutions.1INTRODUCTIONInOctober2018,theU.N.IntergovernmentalPanelonClimateChange(IPCC)reportedthatglobalcarbonemissionsmustbehalvedby
2030to
limitwarmingto
1.5°Candavoid
catastrophicclimateimpacts(UNIPCC2018).Mostexistingstudies,however,examine2050astheyear
thatdeepdecarbonizationofelectricpower
systems
canbeachieved—atimelinethatwouldalsohinderdecarbonizationofthebuildings,industrial,andtransportationsectorsthroughelectrification.2
Thesestudiesofferlittlehopethatclimatechangeimpactscanbeheldto
amanageablelevel
inthiscentury.Yet,
inlightofrecenttrends,thesestudies—eventhosepublishedinthepastfew
years—presentoverly
conservativeestimatesofdecarbonizationpotential.Plummetingcostsandcostprojectionsforwindandsolarenergyhave
dramaticallychangedtheprospectsforrapid,cost-effectivedecarbonization(Figure1).At
thesametime,batteryenergystoragehasbecomeaviableoptionforcost-effectivelyintegratinghighlevels
ofwindandsolargenerationintoelectricitygrids.WIND
LCOE,
BEST
CAPACITYFACTOR
|
ATB
LOW
CASESOLAR
PV
LCOE,
BEST
CAPACITYFACTOR
|
ATB
LOW
CASEFIGURE
1.National
Renewable
EnergyLaboratory
(NREL)
AnnualTechnology
Baseline
(ATB)
Low-Case
Cost
Projections
Made2015–2019
for
Years
rough2050601009080705040ATB
201560ATB
20153050ATB
2016Wind
(left)
and
solar40ATB
2017photovoltaic
(PV,
right)20ATB
201630levelized
cost
of
electricity(LCOE)
projections
are
shownby
the
year
that
each
projectionwas
made
in
the
NREL
ATB(NREL
2015;
2016;
2017;2018;2019)
using
ATB
low-caseassumptions
and
best
capacityfactors.
LCOE
projections
wererevised
downwards
in
almostevery
year
during
this
period.ATB
20182010ATB2018ATB
2017ATB
201910ATB
2019002Broadly,thesestudiesdonotassessnear-completepower-sectordecarbonization(80%decarbonizationorgreater)before2050.Theonestudy(MacDonaldetal.2016)thatassessescompletedecarbonizationoftheU.S.powersectorby
2030doesnotassumeasignificantroleforbatterystorage,asourreportdoes.Instead,itreliesonexpansionoftheU.S.transmissionnetwork,whichistechnicallyandeconomicallychallenging(Joskow2004).SeeAppendix1forabriefreviewofsomeofthesestudies.2METHODS
ANDDATA
SUMMARYThisreportusesthelatestrenewableenergyandbatterycostinformationto
demonstratethetechnicalandeconomicfeasibilityofachieving90%“clean”electricityintheUnitedStatesby
2035—muchmorequicklythanprojectedby
mostrecentstudies.Generationfromanyresourcethatdoesnotproducedirectcarbondioxide(CO
)emissionsisconsidered2cleaninthisanalysis,includinggenerationfromnuclear,hydropower,
wind,solar,3
biomass,andfossilfuelplantswithcarboncaptureandstorage.Considerationoftheaccelerated2035timeframehelpsalignexpectationsforpower-sectordecarbonizationwithclimaterealitieswhileinformingthepolicydialogueneededto
achievesuchanambitiousgoal.Thisreport’stargetof90%cleanelectricity(ratherthan100%)by
2035isalsoimportantforenvisioningdecarbonizationatapacemorerapidthanconsideredinpreviousstudies.Achievingalmost-completepower
sectordecarbonizationin2035may
ultimatelyincreasethespeedandcost-effectivenessofpervasive,cross-sectordecarbonization.Afterabriefdescriptionofmethodsanddata,thekey
findingsofthe2035decarbonizationreportare
summarized.Thereport’sappendicesprovidedetailsoftheanalysesandresults.AcompanionreportfromEnergyInnovationidentifiesinstitutional,market,andregulatorychangesneededto
facilitatetherapidtransformationto
a90%cleanpower
sectorintheUnitedStates(EnergyInnovation2020).We
performedpower-sectormodelinginconsultationwithatechnicalreview
committeeconsistingofexpertsfromutilities,universities,andthinktanks.We
employedstate-of-the-artmodels,includingNREL’s
RegionalEnergyDeploymentSystem(ReEDS)capacity-expansionmodelandEnergyExemplar’sPLEXOS
electricityproduction-costmodel,inconjunctionwithpubliclyavailablegenerationandtransmissiondatasets.Forecastsofrenewableenergyandbatterycostreductionswere3Theterms“solar”and“PV”areusedinterchangeablyinthisreport,becauseessentiallyallthesolardeployedinthesimulationsisPV;theconcentratingsolarpowerdeploymentisnegligible.2035
THE
REPORT|
12basedonNREL’s
ATB
2019(NREL2019).4
We
usedthesedataandmethodsto
analyzetwo
centralcases:•
No
New
Policy:
Assumescurrentstateandfederalpoliciesandforecastedtrendsintechnologycosts.5•
90%
Clean:
Requiresanational90%cleanelectricityshareby2035.We
analyzedthesensitivityofthe90%Cleancaseto
periodsofextraordinarilylow
renewableenergygenerationand/orhighdemand,to
ensurethatasystem
with90%renewableenergysupplymeetsdemandinevery
hour.
To
assesssystemdependability,definedastheabilityto
meetpower
demandinevery
houroftheyear,
we
simulatedhourlyoperationoftheU.S.power
system
over
60,000hours(eachhourin7weatheryears).Foreachofthesehours,we
confirmedthatelectricitydemandismetineachofthe134regionalzones(subpartsoftheU.S.power
system
representedinthemodel)whileabidingbyseveral
technicalconstraints(suchasramprates
andminimumgeneration)formorethan15,000individualgeneratorsand310transmissionlines.Furtherworkisneededto
assessissuessuchastheeffectofthe90%Cleancaseonlossofloadprobability,system
inertia,andalternating-currenttransmissionflows.We
alsoconsideredthreeprimarysetsoffuturerenewableenergyandbatterystoragecostassumptions(Figure2;seeAppendix2forin-depthcostanalyses):•
Low-Cost:
NRELATB
low-caseassumptions,assuming40%to
50%costreductionsforP
V,
wind,andstorageby
2035(comparedwith2020).•
Base-Cost:
modifiedNRELATB
mid-caseassumptions,assuming2021costsbeginattheATB
low-caseassumptions,butpost-2021costreductionsare
inlinewiththeATB
mid-case.•
High-Cost:
NRELATB
mid-caseassumptions,includingassumed2020coststhatare
higherthanactual2020costs.Appendix3detailsouradditionalscenarioandsensitivityanalyses,includingacasethatseeksto
internalizethesocietalcostsofCO
emissions.We
alsoevaluatedtheimpactof2electrificationusingthehighelectrificationcasefromtheNRELElectrificationFuturesStudy2018(Mai2018).4Thecostreductionsdetailedinthisreportreferprimarilytoutility-scalePV,
wind,andbatterystorage.DistributedPVisconsideredinthisanalysis,servingasaninputtotheReEDSmodelbasedonNRELmodelingassumptions.In2035,underthe90%Cleancase,thereareapproximately60GW
ofdistributedPV,representingapproximately2%oftotalenergygeneration.Fordetailontherenewablecapacitybreakdown,seeAppendix3.5ReEDSconsidersrelevantstateandfederalpolicies,suchasstateRenewablePortfolioStandards,asofearly2019.2035
THE
REPORT|
13WIND
LCOESOLAR
LCOEBATTERY
STORAGE
CAPITAL
COST100903001400HISTORICAL
PPA
PRICE(UNSUBSIDIZED)HISTORICAL
PPA
PRICE(UNSUBSIDIZED)HISTORICAL
CAPITALCOST
(UNSUBSIDIZED)1200100080060040020002502001501005080706050403020100HIGH-COSTLOW-COSTHIGH-COSTBASE-COSTBASE-COSTHIGH-COSTLOW-COSTBASE-COSTLOW-COST0We
testedtherobustnessofourfindingsthroughsensitivityanalysesofthekey
inputassumptionsusedinthisreport,includingsensitivitiesaroundtechnologycosts,financingcosts,andnaturalgasprices.We
consideredthreeprimarysetsoffuturerenewableenergyandbatterystoragetechnologycosts(describedabove),
two
setsoffinancingcosts,andtwo
setsofnaturalgasprices.ThebasecasefinancingcostscorrespondtotheassumptionsusedinNREL(2019)andare
inlinewithtoday’sfinancingcosts.Thehighfinancingcostsassumethatthecostofcapital(real)istwicethecostassumedinthebasecase.Thebasecasenaturalgaspricesare
thesameasinthereferencecaseintheU.S.EnergyInformationAdministration(EIA)AnnualEnergyOutlook(EIA2020a).Thelow
naturalgaspricesuseNewYork
MercantileExchange(NYMEX)futurepricesuntil2023,andbeyond
2023thepriceofnaturalgasiskeptconstantat$2.50/MMbtu(nominal),withafloorof$1.50/MMbtu(2018real).We
evaluate
allpermutationsoftheseassumptionsfortheNoNew
Policyand90%Cleancases(24
casesintotal).RefertoAppendix3forfurthersensitivityanalyses.FIGURE
2.Historical
and
ProjectedTechnology
Cost
Declines
onWhich
Our
Analyses
Were
BasedFor
solar
and
wind,
the
historicalLCOE
was
estimated
by
adjustinghistorical
power-purchaseagreement
(PPA)
prices
forsubsidies
(investment
tax
creditand
production
tax
credit).
PPAprice
data
were
obtained
fromLawrence
Berkeley
NationalLaboratory’s
utility-scale
solar(Bolinger
et
al.
2019a,
2019b)and
wind
(Wiser
and
Bolinger2019)
reports.
For
four-hourbatteries,
historical
pack
costswere
based
on
Bloomberg
NewEnergy
Finance
data
(Goldie-Scot2019),
and
balance-of-system
costdata
were
from
NREL
(2018a).Future
cost
projections
for
all
threetechnologies
were
based
on
NREL(2019).We
usedtheindustry-standardIMPLANmodelto
estimatethejoblossesandgainsassociatedwitheachofourcases.We
usedReEDSto
estimateemissions—CO
aswellassulfurdioxide(SO
)22andnitrogenoxides(NO
)—associatedwithpower
generationxbasedonemissionfactorsforeachgenerationtechnology.We
usedestimatesofthesocialcostofcarbonanddamagesassociatedwithSO
andNO
fromtheliterature(asdollarsand2xprematuredeathspermetrictonofpollutant)to
estimatetheenvironmentaldamagesassociatedwitheachcase.Resultsandassumptionsare
discussedbelowandinAppendix2.2035
THE
REPORT|
14ERR能研微讯
微信公众号:Energy-report欢迎申请加入
ERR
能研微讯开发的能源研究微信群,请提供单位姓名(或学校姓名),申请添加智库掌门人(下面二维码)微信,智库掌门人会进行进群审核,已在能源研究群的人员请勿申请;群组禁止不通过智库掌门人拉人进群。ERR
能研微讯聚焦世界能源行业热点资讯,发布最新能源研究报告,提供能源行业咨询。本订阅号原创内容包含能源行业最新动态、趋势、深度调查、科技发现等内容,同时为读者带来国内外高端能源报告主要内容的提炼、摘要、翻译、编辑和综述,内容版权遵循
CreativeCommons
协议。知识星球提供能源行业最新资讯、政策、前沿分析、报告(日均更新
15条+,十年
plus能源行业分析师主理)提供能源投资研究报告(日均更新
8~12篇,覆盖数十家券商研究所)二维码矩阵资报告号:ERR
能研微讯
订阅号二维码(左)丨行业咨询、情报、专家合作:ERR
能研君(右)视频、图表号、研究成果:能研智库
订阅号二维码(左)丨
ERR
能研微讯头条号、西瓜视频(右)能研智库视频号(左)丨能研智库抖音号(右)3KEY
FINDINGSThissectionhighlightsthekey
findingsfromouranalysis.Additionaldetailsare
providedintheappendices.3.1
STRONG
POLICIES
ARE
REQUIRED
TOCREATE
A
90%
CLEAN
GRID
BY
2035Inour90%Cleancase,we
requirea90%cleanelectricityshareby
2035;thatis,we
setthe2035gridmixto
be90%clean.Inthisanalysis,cleangenerationrefersto
resourcesthatproducenodirectCO
emissions,includinghydropower,
nuclear,
wind,PV,2andbiomass.IntheNoNew
Policycase,however,
thegridmixisdeterminedby
least-costcapacity-expansionmodelingbasedonthecurrentparadigmforelectricity-marketcosts,whichdoesnotfullyinternalizethecostsofenvironmentalandhealthdamagesfromfossilfueluse.Asaresult,cleangeneratorsonlysupply55%oftheelectricityintheNoNew
Policycasein2035.Figure3comparesthegridmixesinthetwo
cases.The2035gridmixfromEIA’s
AnnualEnergyOutlookReferenceCaseissimilar(47%cleangeneration)to
the2035mixintheNoNew
Policycase(EIA2020a).FIGURE
3.Generation
Mixes
for
the
90%Clean
Case
(left)
and
No
NewPolicy
Case
(right),
2020–2035ANNUAL
GENERATION
|
90%
CLEANANNUAL
GENERATION
|
NO
NEWPOLICY5000500040003000200010000SOLARWINDSOLAR4000WINDHYDROGEOTHERMALBIOPOWERHYDRO3000GEOTHERMALNUCLEARNUCLEARBIOPOWEROTHER200010000OTHERGASGASCOALCOAL202O202520302035202O2025203020352035
THE
REPORT|
15The90%Cleancaseassumesimplementationofpoliciesthatpromotelarge-scalerenewableenergyadoptionandyieldnetsocietalbenefitscomparedwiththebusiness-as-usualapproachassumedundertheNoNew
Policycase.AsdetailedinSections3.3and3.6,thenominalelectricitycostincreasesunderthe90%Cleancaseare
morethanoffsetby
thesocietalbenefitsprovidedby
thatcase.3.2
THE
90%
CLEAN
GRID
IS
DEPENDABLEWITHOUT
COAL
PLANTSOR
NEWNATURALGAS
PLANTSGiventhedramaticdeclineinbatterystorageprices,we
findthatsignificantshort-durationstorageiscost-effectiveandplays
acriticalloadinbalancingthegrid.We
estimatethatabout600GWh
(150GW
for4hours)ofstoragecost-effectivelysupportsgridoperationsinthe90%Cleancase,representingabout20%ofdailyelectricitydemand.6
Whenrenewableenergygenerationexceeds
demand,storagecanchargeusingthisotherwise-curtailedelectricityandthendispatchelectricityduringperiodswhenrenewablegenerationfallsshortofdemand.Despitetheadditionofstorage,about14%ofavailablerenewableenergymustbecurtailedannually.
New
long-durationstoragetechnologi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023-2024学年福建省福州市超德中学高一(下)期中语文试卷
- 2024年度公务员劳动合同范本社保福利全面保障3篇
- 2024年设备分期购置与节能改造技术服务合同3篇
- 2025版钢琴教师培训及认证服务合同示范文本3篇
- 2024年行政单位合同业务流程创新与执行标准协议3篇
- 2025版家政钟点工服务合同-含雇主隐私保护承诺3篇
- 物流行业前台工作总结
- 皮肤科护士的工作点滴
- 广州中医院护理工作总结
- 超市前台收银工作总结
- 12345服务热线服务实施方案
- 苏州市2022-2023学年七年级上学期期末数学试题【带答案】
- 工行人工智能风控
- 简易呼吸器使用及检测评分表
- 康复科进修汇报
- 2024-2030年中国水培蔬菜行业发展分析及投资前景预测研究报告
- 2023风电机组预应力混凝土塔筒与基础结构设计标准
- 3D打印技术在医疗领域的应用
- 人员招聘的程序与信息发布
- 仓库班长年终总结
- 2024-2029年中国IP授权行业市场现状分析及竞争格局与投资发展研究报告
评论
0/150
提交评论