2035年展望报告-第一篇:太阳能、风能、电池篇 -英_第1页
2035年展望报告-第一篇:太阳能、风能、电池篇 -英_第2页
2035年展望报告-第一篇:太阳能、风能、电池篇 -英_第3页
2035年展望报告-第一篇:太阳能、风能、电池篇 -英_第4页
2035年展望报告-第一篇:太阳能、风能、电池篇 -英_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PLUMMETINGSOLAR,

WIND,

ANDBATTERY

COSTS

CANACCELERATE

OURCLEAN

ELECTRICITYFUTUREJUNE

2020EXECUTIVESUMMARYGlobalcarbonemissionsmustbehalvedby

2030to

limitwarmingto

1.5°Candavoid

catastrophicclimateimpacts.Mostexistingstudies,however,

examine2050astheyear

thatdeepdecarbonizationofelectricpower

systems

canbeachieved—atimelinethatwouldalsohinderdecarbonizationofthebuildings,industrial,andtransportationsectors.Inlightofrecenttrends,thesestudiespresentoverly

conservativeestimatesofdecarbonizationpotential.Plummetingcostsforwindandsolarenergyhave

dramaticallychangedtheprospectsforrapid,cost-effectiveexpansionofrenewableenergy.

At

thesametime,batteryenergystoragehasbecomeaviableoptionforcost-effectivelyintegratinghighlevels

ofwindandsolargenerationintoelectricitygrids.Thisreportusesthelatestrenewableenergyandbatterycostdatato

demonstratethetechnicalandeconomicfeasibilityofachieving90%clean(carbon-free)electricityintheUnitedStatesby

2035.Two

centralcasesare

simulatedusingstate-of-the-artcapacity-expansionandproduction-costmodels:TheNoNew

Policycaseassumescontinuationofcurrentstateandfederalpolicies;andthe90%Cleancaserequiresthata90%cleanelectricityshareisreachedby

2035.2035

THE

REPORT|

2KEY

FINDINGSTable

ES-1

shows

thereport’sfindingsataglance,andthefollowingdiscussionexpandsonthesefindings.CURRENTGRID

(2019)NO

NEWPOLICY

(2035)90%

CLEAN(2035)TABLEES-1.Highly

Decarbonized

GridDependable

GridU.S.

Power

SystemCharacteristics

by

CaseModeled

in

the

ReportElectricity

CostReductions---Feasible

Scale-UpHighest

Number

of

JobsSupportedLargest

EnvironmentalSavings-STRONG

POLICIESAREREQUIREDTO

CREATE

A

90%CLEANGRIDBY

2035The90%Cleancaseassumesstrongpoliciesdrive90%cleanelectricityby

2035.TheNoNew

Policycaseachievesonly55%cleanelectricityin2035(FigureES-1).AcompanionreportfromEnergyInnovationidentifiesinstitutional,market,andregulatorychangesneededto

facilitatetherapidtransformationto

a90%cleanpower

sectorintheUnitedStates.2035

THE

REPORT|

3ANNUAL

GENERATION

|

90%

CLEANANNUAL

GENERATION

|

NO

NEWPOLICY50005000SOLARSOLAR40004000WINDWINDHYDROGEOTHERMALBIOPOWERHYDRO30003000200010000GEOTHERMALNUCLEARNUCLEARBIOPOWEROTHER200010000OTHERGASGASCOALCOAL202O202520302035202O202520302035THE90%CLEANGRIDISDEPENDABLE

WITHOUTCOALPLANTS

ORNEWNATURAL

GAS

PLANTSFIGURE

ES-1.Generation

Mixes

for

the

90%

CleanCase

(left)

and

No

New

Policy

Case(right),

2020–2035Retainingexistinghydropower

andnuclearcapacity(afteraccountingforplannedretirements),andmuchoftheexistingnaturalgascapacitycombinedwithnew

batterystorage,issufficientto

meetU.S.electricitydemanddependably(i.e.,every

houroftheyear)witha90%cleangridin2035.Underthe90%Cleancase,allexistingcoalplantsare

retiredby

2035,andnonew

fossilfuelplantsare

built.Duringnormalperiodsofgenerationanddemand,wind,solar,

andbatteriesprovide70%ofannualgeneration,whilehydropower

andnuclearprovide20%.Duringperiodsofvery

highdemandand/or

very

lowrenewablegeneration,existingnaturalgas,hydropower,

andnuclearplantscombinedwithbatterystoragecost-effectivelycompensateformismatchesbetweendemandandwind/solargeneration.Generationfromnaturalgasplantsconstitutesabout10%oftotalannualelectricitygeneration,whichisabout70%lower

thantheirgenerationin2019.ELECTRICITYCOSTS

FROMTHE90%CLEANGRIDARELOWER

THANTODAY’S

COSTSWholesaleelectricitycosts,whichincludethecostofgenerationplusincrementaltransmissioninvestments,are

about10%lowerin2035underthe90%Cleancasethantheyare

today,

mainlyowingto

low

renewableenergyandbatterycosts(FigureES-2).Pervasivenessoflow-costrenewableenergyandbatterystorageacrosstheUnitedStatesrequiresinvestmentmainlyintransmissionspursconnectingrenewablegenerationto

existing2035

THE

REPORT|

4high-capacitytransmissionlinesorloadcenters.Hence,additionaltransmission-relatedcostsandsitingconflictsare

modest.Relyingonnaturalgasforonly10%ofgenerationavoidslargeinvestmentsforinfrequentlyusedcapacity,

helpingto

avoid

majornewstranded-assetcosts.Retainingnaturalgasgenerationaverts

theneedto

buildexcess

renewableenergyandlong-durationstoragecapacity—helpingachieve90%cleanelectricitywhilekeepingcostsdown.Whilestilllower

thantoday’s

costs,wholesaleelectricitycostsare

12%higherunderthe90%CleancasethanundertheNoNew

Policycasein2035.However,

thiscomparisondoesnotaccountforthevalueofemissionsreductionsorjobcreationunderthe90%Cleancase.8070605040302010080706050403020100NO

NEW

POLICYW/

ENV

COST90%

CLEANW/

ENV

COST90%

CLEANW/O

ENV

COSTNO

NEW

POLICYW/O

ENV

COST202O202520302035202O202520302035FIGURE

ES-2.THE90%CLEANGRIDAVOIDS

$1.2TRILLIONINHEALTH

ANDENVIRONMENTAL

DAMAGES,

INCLUDING

85,000

PREMATUREDEATHS,

THROUGH2050Wholesale

Electricity

Costswith

(left)

and

without

(right)Environmental

Costs,

forthe

90%

Clean

and

No

NewPolicy

CasesThe90%CleancasenearlyeliminatesemissionsfromtheU.S.power

sectorby

2035,resultinginenvironmentalandhealthbenefitslargelydrivenby

reducedmortalityrelatedto

electricitygeneration(FigureES-3).ComparedwiththeNoNew

Policycase,the90%Cleancasereducescarbondioxide(CO

)emissionsby288%by

2035.Italsoreducesexposureto

fineparticulate(PM

)2.5matterby

reducingnitrogenoxide(NO

)andsulfurdioxide(SO

)x2emissionsby

96%and99%,respectively.1

Asaresult,the90%Cleancaseavoids

over

$1.2trillioninhealthandenvironmentalcosts,including85,000avoidedprematuredeaths,through2050.Thesesavingsequateroughlyto

2cents/kWhofwholesale1PrimaryPM2.5

emissionsreductionsarenotestimatedby

themodel,resultinginaconservativeestimateofreducedPM2.5

exposure.2035

THE

REPORT|

5electricitycosts,whichmakesthe90%Cleancasethelowest-net-costoptionwhenenvironmentalandhealthcostsare

considered.CO

EMISSIONSSO

EMISSIONSNO

EMISSIONS22X(MILLION

TONS/YR)(MILLION

TONS/YR)(MILLION

TONS/YR)20001.21.2NO

NEW

POLICY1800160014001200NO

NEW

POLICYNO

NEW

POLICY1.01.00.80.60.80.6100090%

CLEAN80090%

CLEAN90%

CLEAN0.40.20.00.40.20.06004002000FIGURE

ES-3.Emissions

of

CO

,

SO

,

and

NO

in

the

90%

Clean

and

No

New

Policy

Cases,

2020–203522xSCALING-UPRENEWABLES

TO

ACHIEVE

90%CLEANENERGYBY

2035

ISFEASIBLETo

achievethe90%Cleancaseby

2035,1,100

GW

ofnew

windandsolargenerationmustbebuilt,averagingabout70

GW

peryear

(FigureES-4).RecentU.S.precedentsfornaturalgasandwind/solarexpansionsuggestthatarenewableenergybuildoutofthismagnitudeischallengingbutfeasible.New

renewableresourcescanbebuiltcost-effectivelyinallregionsofthecountry.2035

THE

REPORT|

6CUMULATIVE

NEW

CAPACITY

ADDITIONS1400Battery

StorageSolarWind120010008006004002000FIGURE

ES-4.Cumulative

New

Capacity

Additionsin

the

90%

Clean

Case,

2020–2035202O202520302035THE90%CLEANGRIDCANSIGNIFICANTLY

INCREASEENERGY-SECTOR

EMPLOYMENTThe90%Cleancasesupportsatotalof29millionjob-yearscumulativelyduring2020–2035.Employmentrelatedto

theenergysectorincreasesby

approximately8.5millionnetjob-years,asincreasedemploymentfromexpandingrenewableenergyandbatterystoragemorethanreplaceslostemploymentrelatedto

decliningfossilfuelgeneration.TheNoNew

Policycaserequiresone-thirdfewer

jobs,foratotalof20millionjob-yearsover

thestudyperiod.Thesejobsincludedirect,indirect,andinducedjobsrelatedto

construction,manufacturing,operationsandmaintenance,andthesupplychain.Overall,the90%Cleancasesupportsover

500,000morejobseachyear

comparedtotheNoNew

Policycase.ACCELERATING

THE

CLEANENERGY

FUTUREEstablishingatargetyear

of2035,ratherthanthetypical2050target,helpsalignexpectationsforpower-sectordecarbonizationwithclimaterealitieswhileinformingthepolicydialogueneededto

achievesuchanambitiousgoal.Aimingfor90%cleanelectricity—ratherthan100%—by2035isalsoimportantforenvisioningrapid,cost-effectivedecarbonization.By

2035,emergingtechnologiessuchasfirm,low-carbonpower

shouldbematureenoughto

beginto

replacetheremainingnaturalgasgenerationasthenationacceleratestoward

100%,cross-sectordecarbonization.Reaching90%zero-carbonelectricityintheUnitedStatesby

2035wouldcontributea27%reductionineconomy-widecarbonemissionsfrom2010levels.2035

THE

REPORT|

7TABLE

OFCONENTSExecutive

Summary1.

Introduction21213162.

Methods

and

Data

Summary3.

Key

Findings3.1

StrongPoliciesAreRequiredtoCreatea90%CleanGridby

2035163.2

The90%CleanGridIsDependablewithoutCoalPlantsorNew

NaturalGasPlants172227283.3

ElectricityCostsfromthe90%CleanGridAreLower

thanToday’s

Costs3.4

Scaling-UpRenewablesto

Achieve90%CleanEnergyby

2035IsFeasible3.5

The90%CleanGridCanSignificantlyIncreaseEnergy-SectorEmployment3.6

The90%CleanGridAvoids

$1.2TrillioninHealthandEnvironmentalDamages,Including85,000PrematureDeaths,Through20503034364.

Caveats

and

Future

WorkReferencesFunding

was

provided

bythe

MacArthur

Foundation.NAMESANDAFFILIATIONS

OFAUTHORS

ANDTECHNICALREVIEWCOMMITTEEAmolPhadke,1*UmedPaliwal,1

NikitAbhyankar,1

Taylor

McNair,2BenPaulos,3

DavidWooley,1*RicO’Connell2*1

Goldman

School

of

Public

Policy,

University

of

California

Berkeley,

2

GridLab,3

PaulosAnalysis.

*

Corresponding

AuthorsBeloware

themembersoftheTechnical

Review

Committee(TRC).TheTRCprovidedinputandguidancerelatedto

studydesignandevaluation,butthecontentsandconclusionsofthereport,includinganyerrorsandomissions,are

thesoleresponsibilityoftheauthors.TRCmemberaffiliationsinnowayimplythatthoseorganizationssupportorendorsethisworkinanyway.SoniaAggarwal,Energy

InnovationMarkAhlstrom,Energy

Systems

Integration

GroupSteve

Beuning,Holy

Cross

EnergyAaronBloom,Energy

Systems

Integration

GroupSeverinBorenstein,Haas

School

of

Business,

University

ofCalifornia

BerkeleyBenHobbs,Johns

Hopkins

UniversityAidanTuohy,

Electric

Power

Research

InstituteACKNOWLEDGEMENTSThefollowingpeopleprovidedinvaluabletechnicalsupport,input,andassistanceinmakingthisreportpossible.PhoebeSweet,CourtneySt.John,ChelseaEakin,LindsayHamilton,Climate

NexusSilvioMarcacci,Energy

InnovationJarettZuboy,

independent

contractorBetonyJones,Inclusive

EconomicsSimoneCobb,Goldman

School

of

Public

Policy,

University

ofCalifornia

BerkeleyManinderThindandJulianMarshall,University

of

WashingtonYinongSun,National

Renewable

Energy

LaboratoryZaneSelvans,Catalyst

CooperativeAppendices,

supportingreports,

and

datavisualizations

can

be

found

at2035We

are

thankfulto

theNationalRenewableEnergyLaboratoryformakingitsReEDSmodelpubliclyavailable,aswellasalltheirscenariosandtheAnnualTechnology

Baseline.2035

THE

REPORT|

9ABOUTUNIVERSITYOFCALIFORNIA

BERKELEYGOLDMANSCHOOLOFPUBLICPOLICYABOUTGRIDLABGridLabisaninnovativenon-profitthatprovidestechnicalgridexpertisetoenhancepolicydecision-makingandto

ensurearapidtransitionto

areliable,cost-effective,andlow-carbonfuture.TheCenterforEnvironmentalPublicPolicy,

housedatUCBerkeley’sGoldmanSchoolofPublicPolicy,

takesanintegratedapproachto

solvingenvironmentalproblemsandsupportsthecreationandimplementationofpublicpoliciesbasedonexactinganalyticalstandardsthatcarefullydefineproblemsandmatchthemwiththemostimpactfulsolutions.1INTRODUCTIONInOctober2018,theU.N.IntergovernmentalPanelonClimateChange(IPCC)reportedthatglobalcarbonemissionsmustbehalvedby

2030to

limitwarmingto

1.5°Candavoid

catastrophicclimateimpacts(UNIPCC2018).Mostexistingstudies,however,examine2050astheyear

thatdeepdecarbonizationofelectricpower

systems

canbeachieved—atimelinethatwouldalsohinderdecarbonizationofthebuildings,industrial,andtransportationsectorsthroughelectrification.2

Thesestudiesofferlittlehopethatclimatechangeimpactscanbeheldto

amanageablelevel

inthiscentury.Yet,

inlightofrecenttrends,thesestudies—eventhosepublishedinthepastfew

years—presentoverly

conservativeestimatesofdecarbonizationpotential.Plummetingcostsandcostprojectionsforwindandsolarenergyhave

dramaticallychangedtheprospectsforrapid,cost-effectivedecarbonization(Figure1).At

thesametime,batteryenergystoragehasbecomeaviableoptionforcost-effectivelyintegratinghighlevels

ofwindandsolargenerationintoelectricitygrids.WIND

LCOE,

BEST

CAPACITYFACTOR

|

ATB

LOW

CASESOLAR

PV

LCOE,

BEST

CAPACITYFACTOR

|

ATB

LOW

CASEFIGURE

1.National

Renewable

EnergyLaboratory

(NREL)

AnnualTechnology

Baseline

(ATB)

Low-Case

Cost

Projections

Made2015–2019

for

Years

rough2050601009080705040ATB

201560ATB

20153050ATB

2016Wind

(left)

and

solar40ATB

2017photovoltaic

(PV,

right)20ATB

201630levelized

cost

of

electricity(LCOE)

projections

are

shownby

the

year

that

each

projectionwas

made

in

the

NREL

ATB(NREL

2015;

2016;

2017;2018;2019)

using

ATB

low-caseassumptions

and

best

capacityfactors.

LCOE

projections

wererevised

downwards

in

almostevery

year

during

this

period.ATB

20182010ATB2018ATB

2017ATB

201910ATB

2019002Broadly,thesestudiesdonotassessnear-completepower-sectordecarbonization(80%decarbonizationorgreater)before2050.Theonestudy(MacDonaldetal.2016)thatassessescompletedecarbonizationoftheU.S.powersectorby

2030doesnotassumeasignificantroleforbatterystorage,asourreportdoes.Instead,itreliesonexpansionoftheU.S.transmissionnetwork,whichistechnicallyandeconomicallychallenging(Joskow2004).SeeAppendix1forabriefreviewofsomeofthesestudies.2METHODS

ANDDATA

SUMMARYThisreportusesthelatestrenewableenergyandbatterycostinformationto

demonstratethetechnicalandeconomicfeasibilityofachieving90%“clean”electricityintheUnitedStatesby

2035—muchmorequicklythanprojectedby

mostrecentstudies.Generationfromanyresourcethatdoesnotproducedirectcarbondioxide(CO

)emissionsisconsidered2cleaninthisanalysis,includinggenerationfromnuclear,hydropower,

wind,solar,3

biomass,andfossilfuelplantswithcarboncaptureandstorage.Considerationoftheaccelerated2035timeframehelpsalignexpectationsforpower-sectordecarbonizationwithclimaterealitieswhileinformingthepolicydialogueneededto

achievesuchanambitiousgoal.Thisreport’stargetof90%cleanelectricity(ratherthan100%)by

2035isalsoimportantforenvisioningdecarbonizationatapacemorerapidthanconsideredinpreviousstudies.Achievingalmost-completepower

sectordecarbonizationin2035may

ultimatelyincreasethespeedandcost-effectivenessofpervasive,cross-sectordecarbonization.Afterabriefdescriptionofmethodsanddata,thekey

findingsofthe2035decarbonizationreportare

summarized.Thereport’sappendicesprovidedetailsoftheanalysesandresults.AcompanionreportfromEnergyInnovationidentifiesinstitutional,market,andregulatorychangesneededto

facilitatetherapidtransformationto

a90%cleanpower

sectorintheUnitedStates(EnergyInnovation2020).We

performedpower-sectormodelinginconsultationwithatechnicalreview

committeeconsistingofexpertsfromutilities,universities,andthinktanks.We

employedstate-of-the-artmodels,includingNREL’s

RegionalEnergyDeploymentSystem(ReEDS)capacity-expansionmodelandEnergyExemplar’sPLEXOS

electricityproduction-costmodel,inconjunctionwithpubliclyavailablegenerationandtransmissiondatasets.Forecastsofrenewableenergyandbatterycostreductionswere3Theterms“solar”and“PV”areusedinterchangeablyinthisreport,becauseessentiallyallthesolardeployedinthesimulationsisPV;theconcentratingsolarpowerdeploymentisnegligible.2035

THE

REPORT|

12basedonNREL’s

ATB

2019(NREL2019).4

We

usedthesedataandmethodsto

analyzetwo

centralcases:•

No

New

Policy:

Assumescurrentstateandfederalpoliciesandforecastedtrendsintechnologycosts.5•

90%

Clean:

Requiresanational90%cleanelectricityshareby2035.We

analyzedthesensitivityofthe90%Cleancaseto

periodsofextraordinarilylow

renewableenergygenerationand/orhighdemand,to

ensurethatasystem

with90%renewableenergysupplymeetsdemandinevery

hour.

To

assesssystemdependability,definedastheabilityto

meetpower

demandinevery

houroftheyear,

we

simulatedhourlyoperationoftheU.S.power

system

over

60,000hours(eachhourin7weatheryears).Foreachofthesehours,we

confirmedthatelectricitydemandismetineachofthe134regionalzones(subpartsoftheU.S.power

system

representedinthemodel)whileabidingbyseveral

technicalconstraints(suchasramprates

andminimumgeneration)formorethan15,000individualgeneratorsand310transmissionlines.Furtherworkisneededto

assessissuessuchastheeffectofthe90%Cleancaseonlossofloadprobability,system

inertia,andalternating-currenttransmissionflows.We

alsoconsideredthreeprimarysetsoffuturerenewableenergyandbatterystoragecostassumptions(Figure2;seeAppendix2forin-depthcostanalyses):•

Low-Cost:

NRELATB

low-caseassumptions,assuming40%to

50%costreductionsforP

V,

wind,andstorageby

2035(comparedwith2020).•

Base-Cost:

modifiedNRELATB

mid-caseassumptions,assuming2021costsbeginattheATB

low-caseassumptions,butpost-2021costreductionsare

inlinewiththeATB

mid-case.•

High-Cost:

NRELATB

mid-caseassumptions,includingassumed2020coststhatare

higherthanactual2020costs.Appendix3detailsouradditionalscenarioandsensitivityanalyses,includingacasethatseeksto

internalizethesocietalcostsofCO

emissions.We

alsoevaluatedtheimpactof2electrificationusingthehighelectrificationcasefromtheNRELElectrificationFuturesStudy2018(Mai2018).4Thecostreductionsdetailedinthisreportreferprimarilytoutility-scalePV,

wind,andbatterystorage.DistributedPVisconsideredinthisanalysis,servingasaninputtotheReEDSmodelbasedonNRELmodelingassumptions.In2035,underthe90%Cleancase,thereareapproximately60GW

ofdistributedPV,representingapproximately2%oftotalenergygeneration.Fordetailontherenewablecapacitybreakdown,seeAppendix3.5ReEDSconsidersrelevantstateandfederalpolicies,suchasstateRenewablePortfolioStandards,asofearly2019.2035

THE

REPORT|

13WIND

LCOESOLAR

LCOEBATTERY

STORAGE

CAPITAL

COST100903001400HISTORICAL

PPA

PRICE(UNSUBSIDIZED)HISTORICAL

PPA

PRICE(UNSUBSIDIZED)HISTORICAL

CAPITALCOST

(UNSUBSIDIZED)1200100080060040020002502001501005080706050403020100HIGH-COSTLOW-COSTHIGH-COSTBASE-COSTBASE-COSTHIGH-COSTLOW-COSTBASE-COSTLOW-COST0We

testedtherobustnessofourfindingsthroughsensitivityanalysesofthekey

inputassumptionsusedinthisreport,includingsensitivitiesaroundtechnologycosts,financingcosts,andnaturalgasprices.We

consideredthreeprimarysetsoffuturerenewableenergyandbatterystoragetechnologycosts(describedabove),

two

setsoffinancingcosts,andtwo

setsofnaturalgasprices.ThebasecasefinancingcostscorrespondtotheassumptionsusedinNREL(2019)andare

inlinewithtoday’sfinancingcosts.Thehighfinancingcostsassumethatthecostofcapital(real)istwicethecostassumedinthebasecase.Thebasecasenaturalgaspricesare

thesameasinthereferencecaseintheU.S.EnergyInformationAdministration(EIA)AnnualEnergyOutlook(EIA2020a).Thelow

naturalgaspricesuseNewYork

MercantileExchange(NYMEX)futurepricesuntil2023,andbeyond

2023thepriceofnaturalgasiskeptconstantat$2.50/MMbtu(nominal),withafloorof$1.50/MMbtu(2018real).We

evaluate

allpermutationsoftheseassumptionsfortheNoNew

Policyand90%Cleancases(24

casesintotal).RefertoAppendix3forfurthersensitivityanalyses.FIGURE

2.Historical

and

ProjectedTechnology

Cost

Declines

onWhich

Our

Analyses

Were

BasedFor

solar

and

wind,

the

historicalLCOE

was

estimated

by

adjustinghistorical

power-purchaseagreement

(PPA)

prices

forsubsidies

(investment

tax

creditand

production

tax

credit).

PPAprice

data

were

obtained

fromLawrence

Berkeley

NationalLaboratory’s

utility-scale

solar(Bolinger

et

al.

2019a,

2019b)and

wind

(Wiser

and

Bolinger2019)

reports.

For

four-hourbatteries,

historical

pack

costswere

based

on

Bloomberg

NewEnergy

Finance

data

(Goldie-Scot2019),

and

balance-of-system

costdata

were

from

NREL

(2018a).Future

cost

projections

for

all

threetechnologies

were

based

on

NREL(2019).We

usedtheindustry-standardIMPLANmodelto

estimatethejoblossesandgainsassociatedwitheachofourcases.We

usedReEDSto

estimateemissions—CO

aswellassulfurdioxide(SO

)22andnitrogenoxides(NO

)—associatedwithpower

generationxbasedonemissionfactorsforeachgenerationtechnology.We

usedestimatesofthesocialcostofcarbonanddamagesassociatedwithSO

andNO

fromtheliterature(asdollarsand2xprematuredeathspermetrictonofpollutant)to

estimatetheenvironmentaldamagesassociatedwitheachcase.Resultsandassumptionsare

discussedbelowandinAppendix2.2035

THE

REPORT|

14ERR能研微讯

微信公众号:Energy-report欢迎申请加入

ERR

能研微讯开发的能源研究微信群,请提供单位姓名(或学校姓名),申请添加智库掌门人(下面二维码)微信,智库掌门人会进行进群审核,已在能源研究群的人员请勿申请;群组禁止不通过智库掌门人拉人进群。ERR

能研微讯聚焦世界能源行业热点资讯,发布最新能源研究报告,提供能源行业咨询。本订阅号原创内容包含能源行业最新动态、趋势、深度调查、科技发现等内容,同时为读者带来国内外高端能源报告主要内容的提炼、摘要、翻译、编辑和综述,内容版权遵循

CreativeCommons

协议。知识星球提供能源行业最新资讯、政策、前沿分析、报告(日均更新

15条+,十年

plus能源行业分析师主理)提供能源投资研究报告(日均更新

8~12篇,覆盖数十家券商研究所)二维码矩阵资报告号:ERR

能研微讯

订阅号二维码(左)丨行业咨询、情报、专家合作:ERR

能研君(右)视频、图表号、研究成果:能研智库

订阅号二维码(左)丨

ERR

能研微讯头条号、西瓜视频(右)能研智库视频号(左)丨能研智库抖音号(右)3KEY

FINDINGSThissectionhighlightsthekey

findingsfromouranalysis.Additionaldetailsare

providedintheappendices.3.1

STRONG

POLICIES

ARE

REQUIRED

TOCREATE

A

90%

CLEAN

GRID

BY

2035Inour90%Cleancase,we

requirea90%cleanelectricityshareby

2035;thatis,we

setthe2035gridmixto

be90%clean.Inthisanalysis,cleangenerationrefersto

resourcesthatproducenodirectCO

emissions,includinghydropower,

nuclear,

wind,PV,2andbiomass.IntheNoNew

Policycase,however,

thegridmixisdeterminedby

least-costcapacity-expansionmodelingbasedonthecurrentparadigmforelectricity-marketcosts,whichdoesnotfullyinternalizethecostsofenvironmentalandhealthdamagesfromfossilfueluse.Asaresult,cleangeneratorsonlysupply55%oftheelectricityintheNoNew

Policycasein2035.Figure3comparesthegridmixesinthetwo

cases.The2035gridmixfromEIA’s

AnnualEnergyOutlookReferenceCaseissimilar(47%cleangeneration)to

the2035mixintheNoNew

Policycase(EIA2020a).FIGURE

3.Generation

Mixes

for

the

90%Clean

Case

(left)

and

No

NewPolicy

Case

(right),

2020–2035ANNUAL

GENERATION

|

90%

CLEANANNUAL

GENERATION

|

NO

NEWPOLICY5000500040003000200010000SOLARWINDSOLAR4000WINDHYDROGEOTHERMALBIOPOWERHYDRO3000GEOTHERMALNUCLEARNUCLEARBIOPOWEROTHER200010000OTHERGASGASCOALCOAL202O202520302035202O2025203020352035

THE

REPORT|

15The90%Cleancaseassumesimplementationofpoliciesthatpromotelarge-scalerenewableenergyadoptionandyieldnetsocietalbenefitscomparedwiththebusiness-as-usualapproachassumedundertheNoNew

Policycase.AsdetailedinSections3.3and3.6,thenominalelectricitycostincreasesunderthe90%Cleancaseare

morethanoffsetby

thesocietalbenefitsprovidedby

thatcase.3.2

THE

90%

CLEAN

GRID

IS

DEPENDABLEWITHOUT

COAL

PLANTSOR

NEWNATURALGAS

PLANTSGiventhedramaticdeclineinbatterystorageprices,we

findthatsignificantshort-durationstorageiscost-effectiveandplays

acriticalloadinbalancingthegrid.We

estimatethatabout600GWh

(150GW

for4hours)ofstoragecost-effectivelysupportsgridoperationsinthe90%Cleancase,representingabout20%ofdailyelectricitydemand.6

Whenrenewableenergygenerationexceeds

demand,storagecanchargeusingthisotherwise-curtailedelectricityandthendispatchelectricityduringperiodswhenrenewablegenerationfallsshortofdemand.Despitetheadditionofstorage,about14%ofavailablerenewableenergymustbecurtailedannually.

New

long-durationstoragetechnologi

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论