![matlab神经网络实例(超级简单)_第1页](http://file4.renrendoc.com/view/432e5eabf55e80c1d9885aff068c87fb/432e5eabf55e80c1d9885aff068c87fb1.gif)
![matlab神经网络实例(超级简单)_第2页](http://file4.renrendoc.com/view/432e5eabf55e80c1d9885aff068c87fb/432e5eabf55e80c1d9885aff068c87fb2.gif)
![matlab神经网络实例(超级简单)_第3页](http://file4.renrendoc.com/view/432e5eabf55e80c1d9885aff068c87fb/432e5eabf55e80c1d9885aff068c87fb3.gif)
![matlab神经网络实例(超级简单)_第4页](http://file4.renrendoc.com/view/432e5eabf55e80c1d9885aff068c87fb/432e5eabf55e80c1d9885aff068c87fb4.gif)
![matlab神经网络实例(超级简单)_第5页](http://file4.renrendoc.com/view/432e5eabf55e80c1d9885aff068c87fb/432e5eabf55e80c1d9885aff068c87fb5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
介绍神经网络算法在机械结构优化中的应用的例子(大家要学习的时候只需要把输入输出变量更改为你自己的数据既可以了,如果看完了还有问题的话可以加我微博“极南师兄”给我留言,与大家共同进步)。把一个结构的8个尺寸参数设计为变量,如上图所示,对应的质量,温差,面积作为输出。用神经网络拟合变量与输出的数学模型,首相必须要有数据来源,这里我用复合中心设计法则构造设计点,根据规则,八个变量将构造出81个设计点。然后在ansysworkbench中进行81次仿真(先在proe建模并设置变量,将模型导入wokbench中进行相应的设置,那么就会自动的完成81次仿真,将结果导出来exceel文件)Matlab程序如下P=[20 2.5 6 14.9 16.5 6 14.9 16.515 2.5 6 14.9 16.5 6 14.9 16.525 2.5 6 14.9 16.5 6 14.9 16.520 1 6 14.9 16.5 6 14.916.520 4 6 14.9 16.5 6 14.9 16.520 2.5 2 14.916.5 6 14.9 16.520 2.5 10 14.9 16.5 6 14.9 16.520 2.5 6 10 16.5 6 14.9 16.520 2.5 6 19.8 16.5 6 14.9 16.520 2.5 6 14.9 10 6 14.9 16.520 2.5 6 14.9 23 6 14.9 16.520 2.5 6 14.9 16.5 2 14.9 16.520 2.5 6 14.9 16.5 10 14.9 16.520 2.5 6 14.9 16.5 6 10 16.520 2.5 6 14.9 16.5 6 19.8 16.520 2.5 6 14.9 16.5 6 14.9 1020 2.5 6 14.9 16.5 6 14.9 2317.51238947 1.75371684 4.009911573 12.46214168 13.26610631 4.009911573 12.46214168 19.7338936922.48761053 1.75371684 4.009911573 12.46214168 13.26610631 4.009911573 12.46214168 13.2661063117.51238947 3.24628316 4.009911573 12.46214168 13.26610631 4.009911573 17.33785832 19.7338936922.48761053 3.24628316 4.009911573 12.46214168 13.26610631 4.009911573 17.33785832 13.2661063117.51238947 1.75371684 7.990088427 12.46214168 13.26610631 4.009911573 17.33785832 19.7338936922.48761053 1.75371684 7.990088427 12.46214168 13.26610631 4.009911573 17.33785832 13.2661063117.51238947 3.24628316 7.990088427 12.46214168 13.26610631 4.009911573 12.46214168 19.7338936922.48761053 3.24628316 7.990088427 12.46214168 13.26610631 4.009911573 12.46214168 13.2661063117.51238947 1.75371684 4.009911573 17.33785832 13.26610631 4.009911573 17.33785832 13.2661063122.48761053 1.75371684 4.009911573 17.33785832 13.26610631 4.009911573 17.33785832 19.7338936917.51238947 3.24628316 4.009911573 17.33785832 13.26610631 4.009911573 12.46214168 13.2661063122.48761053 3.24628316 4.009911573 17.33785832 13.26610631 4.009911573 12.46214168 19.7338936917.51238947 1.75371684 7.990088427 17.33785832 13.26610631 4.009911573 12.46214168 13.2661063122.48761053 1.75371684 7.990088427 17.33785832 13.26610631 4.009911573 12.46214168 19.7338936917.51238947 3.24628316 7.990088427 17.33785832 13.26610631 4.009911573 17.33785832 13.2661063122.48761053 3.24628316 7.990088427 17.33785832 13.26610631 4.009911573 17.33785832 19.7338936917.51238947 1.75371684 4.009911573 12.46214168 19.73389369 4.009911573 17.33785832 13.2661063122.48761053 1.75371684 4.009911573 12.46214168 19.73389369 4.009911573 17.33785832 19.7338936917.51238947 3.24628316 4.009911573 12.46214168 19.73389369 4.009911573 12.46214168 13.2661063122.48761053 3.24628316 4.009911573 12.46214168 19.73389369 4.009911573 12.46214168 19.7338936917.51238947 1.75371684 7.990088427 12.46214168 19.73389369 4.009911573 12.46214168 13.2661063122.48761053 1.75371684 7.990088427 12.46214168 19.73389369 4.009911573 12.46214168 19.7338936917.51238947 3.24628316 7.990088427 12.46214168 19.73389369 4.009911573 17.33785832 13.2661063122.48761053 3.24628316 7.990088427 12.46214168 19.73389369 4.009911573 17.33785832 19.7338936917.51238947 1.75371684 4.009911573 17.33785832 19.73389369 4.009911573 12.46214168 19.7338936922.48761053 1.75371684 4.009911573 17.33785832 19.73389369 4.009911573 12.46214168 13.2661063117.51238947 3.24628316 4.009911573 17.33785832 19.73389369 4.009911573 17.33785832 19.7338936922.48761053 3.24628316 4.009911573 17.33785832 19.73389369 4.009911573 17.33785832 13.2661063117.51238947 1.75371684 7.990088427 17.33785832 19.73389369 4.009911573 17.33785832 19.7338936922.48761053 1.75371684 7.990088427 17.33785832 19.73389369 4.009911573 17.33785832 13.2661063117.51238947 3.24628316 7.990088427 17.33785832 19.73389369 4.009911573 12.46214168 19.7338936922.48761053 3.24628316 7.990088427 17.33785832 19.73389369 4.009911573 12.46214168 13.2661063117.51238947 1.75371684 4.009911573 12.46214168 13.26610631 7.990088427 17.33785832 13.2661063122.48761053 1.75371684 4.009911573 12.46214168 13.26610631 7.990088427 17.33785832 19.7338936917.51238947 3.24628316 4.009911573 12.46214168 13.26610631 7.990088427 12.46214168 13.2661063122.48761053 3.24628316 4.009911573 12.46214168 13.26610631 7.990088427 12.46214168 19.7338936917.51238947 1.75371684 7.990088427 12.46214168 13.26610631 7.990088427 12.46214168 13.2661063122.48761053 1.75371684 7.990088427 12.46214168 13.26610631 7.990088427 12.46214168 19.7338936917.51238947 3.24628316 7.990088427 12.46214168 13.26610631 7.990088427 17.33785832 13.2661063122.48761053 3.24628316 7.990088427 12.46214168 13.26610631 7.990088427 17.33785832 19.7338936917.51238947 1.75371684 4.009911573 17.33785832 13.26610631 7.990088427 12.46214168 19.7338936922.48761053 1.75371684 4.009911573 17.33785832 13.26610631 7.990088427 12.46214168 13.2661063117.51238947 3.24628316 4.009911573 17.33785832 13.26610631 7.990088427 17.33785832 19.7338936922.48761053 3.24628316 4.009911573 17.33785832 13.26610631 7.990088427 17.33785832 13.2661063117.51238947 1.75371684 7.990088427 17.33785832 13.26610631 7.990088427 17.33785832 19.7338936922.48761053 1.75371684 7.990088427 17.33785832 13.26610631 7.990088427 17.33785832 13.2661063117.51238947 3.24628316 7.990088427 17.33785832 13.26610631 7.990088427 12.46214168 19.7338936922.48761053 3.24628316 7.990088427 17.33785832 13.26610631 7.990088427 12.46214168 13.2661063117.51238947 1.75371684 4.009911573 12.46214168 19.73389369 7.990088427 12.46214168 19.7338936922.48761053 1.75371684 4.009911573 12.46214168 19.73389369 7.990088427 12.46214168 13.2661063117.51238947 3.24628316 4.009911573 12.46214168 19.73389369 7.990088427 17.33785832 19.7338936922.48761053 3.24628316 4.009911573 12.46214168 19.73389369 7.990088427 17.33785832 13.2661063117.51238947 1.75371684 7.990088427 12.46214168 19.73389369 7.990088427 17.33785832 19.7338936922.48761053 1.75371684 7.990088427 12.46214168 19.73389369 7.990088427 17.33785832 13.2661063117.51238947 3.24628316 7.990088427 12.46214168 19.73389369 7.990088427 12.46214168 19.7338936922.48761053 3.24628316 7.990088427 12.46214168 19.73389369 7.990088427 12.46214168 13.2661063117.51238947 1.75371684 4.009911573 17.33785832 19.73389369 7.990088427 17.33785832 13.2661063122.48761053 1.75371684 4.009911573 17.33785832 19.73389369 7.990088427 17.33785832 19.7338936917.51238947 3.24628316 4.009911573 17.33785832 19.73389369 7.990088427 12.46214168 13.2661063122.48761053 3.24628316 4.009911573 17.33785832 19.73389369 7.990088427 12.46214168 19.7338936917.51238947 1.75371684 7.990088427 17.33785832 19.73389369 7.990088427 12.46214168 13.2661063122.48761053 1.75371684 7.990088427 17.33785832 19.73389369 7.990088427 12.46214168 19.7338936917.51238947 3.24628316 7.990088427 17.33785832 19.73389369 7.990088427 17.33785832 13.2661063122.48761053 3.24628316 7.990088427 17.33785832 19.73389369 7.990088427 17.33785832 19.73389369]';%注意因为本人做了81组仿真试验,这里的矩阵后面有转置符号,在神经网络模型中,输入P的是8X81的矩阵(把程序复制过来之后格式没对齐,大家自己调整一下啦),对应的下面的输出T的是3x81的矩阵。T=[150.749 2.28499 13.466165.148 2.64021 9.6525138.061 1.92976 17.2795149.446 2.25704 13.766151.642 2.31293 13.166147.146 2.22947 14.062154.131 2.3405 12.87144.164 2.2576 13.76155.889 2.31237 13.172150.646 2.28499 13.466150.621 2.28499 13.466147.091 2.22947 14.062154.166 2.3405 12.87144.289 2.2576 13.76155.553 2.31237 13.172150.653 2.28499 13.466150.704 2.28499 13.466148.424 2.37609 12.4879134.952 2.01917 16.3197154.264 2.41865 12.0311141.207 2.06864 15.7885156.492 2.44051 11.7964142.671 2.08358 15.6282152.473 2.44664 11.7306138.329 2.09663 15.488159.696 2.41252 12.0969145.947 2.05559 15.9287155.401 2.41865 12.0311141.73 2.06864 15.7885157.408 2.45858 11.6024144.1 2.10166 15.4341163.483 2.50114 11.1455150.483 2.15114 14.9029154.111 2.3943 12.2924140.418 2.03738 16.1242149.253 2.40044 12.2266135.997 2.05043 15.984151.518 2.4223 11.9919137.257 2.06537 15.8237158.05 2.46485 11.535143.739 2.11485 15.2925153.641 2.3943 12.2924140.723 2.03738 16.1242158.956 2.43686 11.8355146.933 2.08685 15.593160.731 2.4768 11.4068149.315 2.11987 15.2386156.842 2.48293 11.341145.17 2.13292 15.0984156.942 2.45858 11.6024143.948 2.10166 15.4341152.503 2.44664 11.7306138.486 2.09663 15.488154.84 2.4685 11.4959139.795 2.11157 15.3276161.574 2.52914 10.845147.502 2.17913 14.6024156.975 2.44051 11.7964143.06 2.08358 15.6282162.688 2.50114 11.1455150.483 2.15114 14.9029164.588 2.54108 10.7168153.024 2.18415 14.5485160.908 2.52914 10.845147.794 2.17913 14.6024151.437 2.4223 11.9919137.386 2.06537 15.8237156.979 2.48293 11.341144.915 2.13292 15.0984159.167 2.50479 11.1063146.229 2.14786 14.9381155.699 2.49285 11.2345140.767 2.14284 14.992161.782 2.4768 11.4068149.124 2.11987 15.2386157.819 2.46485 11.535143.8 2.11485 15.2925159.553 2.50479 11.1063146.186 2.14786 14.9381166.512 2.56542 10.4554153.896 2.21542 14.2129]';%T为目标矢量[PP,ps]=mapminmax(P,-1,1);%把P归一化处理变为pp,在范围(-1,1)内%把T归一化处理变TT,在范围(-1,1)内,归一化主要是为了消除不通量岗对结果的影响[TT,ps]=mapminmax(T,-1,1);%创建三层前向神经网
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人转让别墅合同范本
- 2025年度文化产业创意设计人员派遣及项目执行合同
- 劳合合同范例
- 公司分红合同范本
- 倒水泥混凝土合同范本
- 2025年度回迁房产权过户及装修配套服务合同
- scada业绩合同范例
- 2025年度脚手架租赁及维护保养服务合同范本
- 2025年度寄售商品销售代理协议
- 2025年度企业年会礼品赞助与活动承办合同
- 食材配送服务售后服务方案
- 新目标(goforit)版初中英语九年级(全一册)全册教案-unit
- 《如何做一名好教师》课件
- 2016-2023年娄底职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 贵阳市2024年高三年级适应性考试(一)一模英语试卷(含答案)
- 地理标志专题通用课件
- 鱼类和淡水生态系统
- 全国大学高考百科汇编之《哈尔滨工业大学》简介
- 学校安全教育教你如何远离危险
- 【人教版】九年级化学上册全册单元测试卷【1-7单元合集】
- 中国传统文化课件6八卦五行
评论
0/150
提交评论