下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
微专题全等三角形的常见模型模型一平移模型典例1(2021·湖南衡阳)如图,点A,B,D,E在同一条直线上,AB=DE,AC∥DF,BC∥EF.求证:△ABC≌△DEF.【答案】∵AC∥DF,∴∠CAB=∠FDE,∵BC∥EF,∴∠ABC=∠DEF,在△ABC和△DEF中,∠∴△ABC≌△DEF(ASA).平移模型的本质是两个全等的三角形,其中一个可以通过另一个平移得到,所以这种模型往往与平行相联系.常见的平移模型的图形有:模型二对称模型典例2(2021·云南)如图,在四边形ABCD中,AD=BC,AC=BD,AC与BD相交于点E.求证:∠DAC=∠CBD.【答案】在△ACD和△BCD中,AD∴△ACD≌△BDC(SSS),∴∠DAC=∠CBD.对称模型的本质是两个全等的三角形能关于某条直线对称.常见的对称模型的图形有:模型三旋转模型类型1不共顶点的旋转模型典例3如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=CD.求证:BC∥EF.【答案】∵AB∥DE,∴∠A=∠D.∵AF=CD,∴AF+CF=CD+CF,∴AC=DF.在△ABC与△DEF中,AB∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴BC∥EF.类型2共顶点的旋转模型(手拉手模型)典例4(2021·湖南湘西州)如图,在△ABC中,点D在AB边上,CB=CD,将边CA绕点C旋转到CE的位置,使得∠ECA=∠BCD,连接DE与AC交于点F,且∠B=70°,∠A=10°.(1)求证:AB=ED;(2)求∠AFE的度数.【答案】(1)∵∠ECA=∠BCD,∴∠ECA+∠ACD=∠BCD+∠ACD,即∠DCE=∠ACB.由旋转可得AC=EC,在△BCA和△DCE中,BC∴△BCA≌△DCE(SAS),∴AB=ED.(2)由(1)中结论可得∠CDE=∠B=70°,又∵BC=CD,∴∠B=∠BDC=70°,∴∠ADE=180°-∠BDE=180°-70°×2=40°,∴∠AFE=∠ADE+∠A=40°+10°=50°.无论哪种类型,图中两个全等三角形都满足其中一个可以通过另一个旋转得到.其常见图形有:典例5如图,在△ABC中,∠ACB=90°,AC=BC,点D,E在边AB上,且∠DCE=45°.试说明:AD2+BE2=DE2.【答案】如图所示,将△BCE绕点C顺时针旋转90°得到△ACF,连接DF.∵AC=BC,∠ACB=90°,∴∠CAB=∠B=45°.由旋转可知∠FCE=90°,CF=CE,AF=BE,∠FAC=∠B=45°,∴∠FAD=90°.∵∠DCE=45°,∴∠DCF=45°,∴∠DCF=∠DCE,∴△CDF≌△CDE(SAS),∴DF=DE.∵AD2+AF2=DF2,∴AD2+BE2=DE2.半角模型也是旋转模型的特殊情况.等边三角形含半角(∠BDC=120°)等腰直角三角形含半角正方形含半角模型四一线三等角模型典例6如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是D,E,AD=3,BE=1,求DE的长.【答案】∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠ACB=∠BCE+∠DCA=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,∠∴△CEB≌△ADC(AAS),∴DC=BE=1,CE=AD=3,∴DE=CE-DC=3-1=2.一线三等角模型是以一条直线构造三个相等的角构造全等三角形.常见图形有:提分训练1.如图,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.解:连接BE.∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD.在△ACD和△BCE中,AC∴△ACD≌△BCE(SAS),∴AD=BE.∵AC=BC=6,∴AB=62.∵∠BAC=∠CAE=45°,∴∠BAE=90°.在Rt△BAE中,BE=AB2+AE22.(2021·陕西改编)如图,AB,BC,CD,DE是四根长度均为5cm的火柴棒,点A,C,E共线.若AC=6cm,CD⊥BC,求线段CE的长度.解:过点B作BM⊥AC于点M,过点D作DN⊥CE于点N.∵BA=BC,DC=DE,∴AM=CM=3,CN=EN.∵CD⊥BC,∴∠BCD=90°,∴∠BCM+∠CBM=∠BCM+∠DCN=90°,∴∠CBM=∠DCN.在△BCM和△CDN中,∠∴△BCM≌△CDN(AAS),∴BM=CN.在Rt△BCM中,∵BC=5,CM=3,∴CN=BM=BC∴CE=2CN=2×4=8(cm).3.(2021·贵州黔东南州)在四边形ABCD中,对角线AC平分∠BAD.【探究发现】(1)如图1,若∠BAD=120°,∠ABC=∠ADC=90°.求证:AD+AB=AC;【拓展迁移】(2)如图2,若∠BAD=120°,∠ABC+∠ADC=180°.猜想AB,AD,AC三条线段的数量关系,并说明理由.解:(1)∵AC平分∠BAD,∠BAD=120°,∴∠DAC=∠BAC=60°.∵∠ADC=∠ABC=90°,∴∠ACD=∠ACB=30°,∴AD=12AC∴AD+AB=AC.(2)AD+AB=AC.理由:过点C分别作CE⊥AD于点E,CF⊥AB于点F.∵AC平分∠BAD,∴CF=CE.∵∠ABC+∠ADC=180°,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 货物贸易基本规则-上课件
- 2024届江西省赣州市寻乌中学高三下学期第四次验收(期末)考试数学试题
- 人教版二年级上数学第一学期期末测试卷五(含答案)
- 物之理-大学物理学(Ⅰ)知到智慧树章节测试课后答案2024年秋中国农业大学
- 个人工作总结
- 《中药材的炮制》课件
- 化学竞赛无机化学绝密课件氢和稀有气体
- 2024年导游资格考试常见问题和突发事件的预防和处理复习讲义及训练试卷
- 2024年党员干部反腐倡廉知识竞赛题库及答案(完整版)
- 《现在完成时态》课件
- 高处安装维护拆除共课件
- 我的职业生涯规划工程造价专业课件
- 幼儿园园长(高级)理论考试题库(含答案)
- 小学科学教师实验技能大赛理论考试(含答案解析)
- 系鞋带活动PPT优秀课件
- 烟草营销副主任述职报告
- 数据模型及决策课程案例分析范文
- 中医药文化知识考核试题及答案
- 电影知识竞赛试题与答案
- 新苏教版2022-2023五年级科学上册《专项学习-像工程师那样》课件
- 公司收款账号变更通知函
评论
0/150
提交评论