![spss心得体会学习总结总结汇报实用文档_第1页](http://file4.renrendoc.com/view/c5415ae56bbf513a1218ec26bcb26ce5/c5415ae56bbf513a1218ec26bcb26ce51.gif)
![spss心得体会学习总结总结汇报实用文档_第2页](http://file4.renrendoc.com/view/c5415ae56bbf513a1218ec26bcb26ce5/c5415ae56bbf513a1218ec26bcb26ce52.gif)
![spss心得体会学习总结总结汇报实用文档_第3页](http://file4.renrendoc.com/view/c5415ae56bbf513a1218ec26bcb26ce5/c5415ae56bbf513a1218ec26bcb26ce53.gif)
![spss心得体会学习总结总结汇报实用文档_第4页](http://file4.renrendoc.com/view/c5415ae56bbf513a1218ec26bcb26ce5/c5415ae56bbf513a1218ec26bcb26ce54.gif)
![spss心得体会学习总结总结汇报实用文档_第5页](http://file4.renrendoc.com/view/c5415ae56bbf513a1218ec26bcb26ce5/c5415ae56bbf513a1218ec26bcb26ce55.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
spss心得体会学习总结总结汇报实用文档篇一:学习数据分析之spss分析工具,可真的不是一般的功夫,真的要很认真和很细心才能做得好spss。下面我来和大家分享一下关于SPSS数据分析心得小结,希望大家从这数据分析心得分享中能得到一些启示和指导。心得1拿到一份数据,或者在看到国内外某个学者的文章有想法而自己手里的数据刚好符合这个想法可以做时,在整理好数据后不要急于建模。一定要对数据做缺失值处理、异常值处理。在数据预处理的基础上再进一步建模,否则可能得到错误的结果。心得2承接心得1,数据预处理怎么做。一是缺失值的处理。我个人有几个看法:一是数据样本量足够大,在删除缺失值样本的情况下不影响估计总体情况,可考虑删除缺失值;二是数据样本量本身不大的情况下,可从以下两点考虑:1是采用缺失值替换,SPSS中具体操作为“转换”菜单下的“替换缺失值”功能,里面有5种替换的方法。若数据样本量不大,同质性比较强,可考虑总体均值替换方法,如数据来自不同的总体(如我做农户调研不同村的数据),可考虑以一个小总体的均值作为替换(如我以一个村的均值替换缺失值)。2是根据原始问卷结合客观实际自行推断估计一个缺失值的样本值,或者以一个类似家庭的值补充缺失值。心得3承接心得1,数据预处理第二点异常值的处理。我大概学了两门统计软件SPSS和Stata,SPSS用的时间久些,熟悉一下,Stata最近才学,不是太熟。关于这点我结合着来说。关于异常值的处理可分为两点,一是怎么判定一个值是异常值,二是怎么去处理。判定异常值的方法我个人认为常用的有两点:1是描述性统计分析,看均值、标准差和最大最小值。一般情况下,若标准差远远大于均值,可粗略判定数据存在异常值。2是通过做指标的箱图判定,箱图上加“*”的个案即为异常个案。发现了异常值,接下来说怎么处理的问题。大概有三种方法:一是正偏态分布数据取对数处理。我做农户微观实证研究,很多时候得到的数据(如收入)都有很大的异常值,数据呈正偏态分布,这种我一般是取对数处理数据。若原始数据中还有0,取对数ln(0)没意义,我就取ln(x+1)处理;二是样本量足够大删除异常值样本;三是从stata里学到的,对数据做结尾或者缩尾处理。这里的结尾处理其实就是同第二个方法,在样本量足够大的情况下删除首尾1%-5%的样本。缩尾指的是人为改变异常值大小。如有一组数据,均值为50,存在几个异常值,都是500多(我这么说有点夸张,大概是这个意思),缩尾处理就是将这几个500多的数据人为改为均值+3标准差左右数据大小,如改为100。总结而言,我个人认为做数据变换的方式比较好,数据变换后再做图或描述性统计看数据分布情况,再剔除个别极端异常值。心得4如何做好回归分析。经过多次实战,以及看了N多视频,上了N多课,看了N多专业的书。我个人总结做回归的步奏如下:1是承接心得1-3,对数据进行预处理,替换缺失值和处理异常值;2是将单个自变量分别与因变量做散点图和做回归,判定其趋势,并做好记录(尤其是系数正负号,要特别记录);3是自变量和因变量一起做相关系数,看各个变量相关关系强弱,为下一步检验多重共线性做准备;4是自变量多重共线性诊断。若变量存在多重共线性,可采用主成分回归,即先将存在多重共线性的变量做主成分分析合并为1个变量,然后再将合并成的新变量和其余自变量一起纳入模型做回归;5是做残差图,看残差图分布是否均匀(一般在+-3个单位之间均匀分布就比较好);6是报告相应结果。心得5看到论坛上有网友问为什么他(她)老师不建议采用后向步进法处理变量多重共线性。记得张文彤老师说过他有个同学做过一个研究,即采用后向步进法剔除变量的方式去做回归,得到的结果犯错的几率比较大。张老师也不建议用这个方法处理多重共线性。处理多重共线性比较好的方法是做主成分回归。心得6有个朋友问我在报到回归结果时用未标准化的回归系数好,还是用标准化后的回归系数好。我个人觉得这个问题仁者见仁智者见智,要看想表达什么。具体而言,如果想表达在其它条件不变的情况下,自变量X每变化1个单位,因变量变化多少个单位,这种情况用未标准化回归系数就好;如果想比较各个自变量对因变量影响的相对大小,即判断相对而言,哪个变量对因变量影响更大。这时需要消除量纲的影响,看标准化后的回归系数。心得7这是投稿一篇SSCI外审专家提出的意见。我做的是无序多分类logistic回归模型。因变量分了5类,有一类个数比较多,达到300多,有1-2类个案比较少,只有30左右。专家提到了要做稳健性检验。这个用stata软件编程加一个robust即可解决问题。不知道在SPSS里面怎么做。欢迎知道的朋友一起讨论下。我个人认为这是一个好问题的。不做稳健性检验模型可能受一些极端值的影响,结果不稳定。可能本来显著的变量剔除1-2个样本后就变得不显著了。所以做回归分析稳健性检验也比较重要。P.S.如果有可能,我希望在后面的心得中附上实际操作的步奏图和解释的。看看有没有人需要这个。不然可能说的一些东西需要的人能看明白,但还是不清楚怎么做。希望和大家一起交流学习。
篇二:我从大二开始一直在不间断的学习统计。从一个小菜鸟开始自学统计学和SPSS工具,再到数据分析、数据挖掘的基本知识。这期间博客是伴我学习的最主要阵地,记录学习过程、认识这个领域里的人,交流学习再到提升。SPSS是一个非常神奇的统计学工具,跑一组数据的背后是探索一项业务问题,从数据到规律,但并不是所有的分析项目都能得到价值信息,大多时候是枯燥、反复的过程。想掌握SPSS,没有统计基础和数据化思维的话,还是很难的。现在数据挖掘也罢,大数据也罢,统计学作为基础学科对其未来发展衍变的影响不可替代。严谨的统计学理论和“傻瓜式”的SPSS菜单操作是两个矛盾体,学习SPSS的人都会遇到这个问题。一边是简单易用的菜单式操作,另一边是滴水不漏的统计基础,而SPSS的默认参数设置基本能完成大部分统计分析过程,这极易造成统计分析方法的难度被低估,甚至被滥用,尤其是刚接触SPSS的朋友。学习SPSS,实际上也没有老手新手之分,唯一的区别是使用SPSS的频率完全不同。高校搞科研,一个工科的博士可能只需要SPSS来完成一篇论文,从此丢弃;而一个真正的喜欢研究数据的人,可能视SPSS为知己,工作必备,一生受用。统计往深处讲,一入统计深似海。此处省略N字,我讲一下我自己的情况。由于我的博客专注于SPSS案例分享,多年坚持不懈吸引到很多读者,经常遇到SPSS咨询,千奇百怪的问题,各种各样的业务环境,我觉得对某项统计方法掌握的不错,实际上在和具体业务分析对接中,才发现有偏差,如何正确通过统计思维和方法破解业务问题的数据规律更像是一门艺术。很多初学者对我说:数据分析的门槛太高了,所以一直没有下决心行动起来。这话是对的也是错的。为什么对?数据分析涉及统计基础、工具使用、可视化、数据挖掘方法、数据化思维,尤其是如何与业务问题进行结合的实践经验,所以说有一定的门槛。为什么不对?如果你的兴趣足够浓厚,一切困难都阻挡不了你前进的脚步。说到最后这一句,我想到了小强,都说打不死的小强,小强到底有多强?它的历史有数亿年,而人只有几百万年;小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 木工承包合同内脚手架
- 啤酒销售合同书
- 农村住房安全保障工程实施指南
- 网站维护与SEO优化作业指导书
- 投资理财与风险防范作业指导书
- 2025年甘肃货运从业资格证题目答案
- 2025年三明道路货运驾驶员从业资格证考试题库完整
- 2025年货车从业资格证答题软件
- 2024-2025学年四年级语文上册第二单元明月4走月亮作业设计北师大版
- 个人前台自我总结
- 2025年电力铁塔市场分析现状
- GB 12158-2024防止静电事故通用要求
- 2025-2030年中国清真食品行业运行状况及投资发展前景预测报告
- 广东省茂名市电白区2024-2025学年七年级上学期期末质量监测生物学试卷(含答案)
- 中国服装零售行业发展环境、市场运行格局及前景研究报告-智研咨询(2025版)
- 临床提高脓毒性休克患者1h集束化措施落实率PDCA品管圈
- DB53∕T 1269-2024 改性磷石膏用于矿山废弃地生态修复回填技术规范
- JBT 14727-2023 滚动轴承 零件黑色氧化处理 技术规范 (正式版)
- 水利工程地震应急预案
- 日历表空白每月打印计划表
- 危险化学品建设项目安全评价流程.doc
评论
0/150
提交评论