




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中学自主招生数学试卷一、选择题(3分×10=30分)1.下列各数中,是5的相反数的是()A.-5B.5C.0.5D.0.22.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.3.人类已知最大的恒星是盾牌座UY,它的规模十分巨大,如果将盾牌座UY放在太阳系的中心,它的表面将接近土星轨道,半径约等于1.43344937×109km.那么这个数的原数是()A.143344937kmB.1433449370kmCmD.1.43344937km4.下列计算正确的是()A.2a-3a=-1B.(a2b3)3=a5b6C.a2·a3=a6D.a2+3a2=4a25.已知关于x的分式方程mx+=2有解,则m的取值范围是()A.m≤1且m≠0B.m≤1C.m≥-1D.m≥-1且m≠06.如图所示,该物体的主视图为()A.B.C.D.7.如图所示,在Rt△ABC中∠A=25°,∠ACB=90°,以点C为圆心,BC为半径的圆交AB于一点D,交AC于点E,则∠DCE的度数为()A.30°B.25°C.40°D.50°8.不等式组的解集在数轴上表示正确的是()A.B.C.D.9.如图所示,分别用两个质地均匀的转盘转得一个数,①号转盘表示数字2的扇形对应的圆角为120°,②号转盘表示数字3的扇形对应的圆心角也是120°,则转得的两个数之积为偶数的概率为()A.B.C.D.10.如图1所示,小明(点P)在操场上跑步,操场由两段半圆形弯道和两段直道构成,若小明从点A(右侧弯道起点)出发以顺时针方向沿着跑道行进.设行进的路程为x,小明到右侧半圆形弯道的圆心O的距离PO为y,可绘制出如图2所示函数图象,那么a-b的值应为()A.4B.π-1C.D.π二、填空题(3分×5=15分)11.(-3)0+=.12.如图所示,直线ABCD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=.13.二次函数y=x2-2mx+1在x≤1时y随x增大而减小,则m的取值范围是.14.如图所示,在平行四边形ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E.连接CE,则阴影部分的面积是.(结果保留π)15.如图所示,正方形ABCD中,AB=8,BE=DF=1,M是射线AD上的动点,点A关于直线EM的对称点为A,,当△A,FC为以FC为直角边的直角三角形时,对应的MA的长为.三、解答题(本大题共8小题,满分75分)16.(8分)先化简÷(x-),然后从-<x<的范围内选取一个合适的正整数作为x的值代入求值.17.(9分)陈老师为了了解所教班级学生完成数学纠错的具体情况,对本班部分学生进行了为期半年的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:⑴陈老师一共调查了多少名同学?⑵将条形统计图补充完整;⑶为了共同进步,陈老师想从被调查的A类学生中随机选取一位同学,再从D类学生中随机选取一位同学组成二人学习小组,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.18.(9分)如图所示,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC至点D,使CD=AC,连接AD交⊙O于点E,连接BE、CE,BE交AC于点F.⑴求证:CE=AE⑵填空:①当∠ABC=时,四边形AOCE是菱形;②若AE=,AB=,则DE的长为.19.(9分)如图所示,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,求此时灯罩顶端C到桌面的高度CE的长?(结果精确到0.1cm,参考数据:≈1.732)20.(9分)如图所示,直线y=ax+1与x轴、y轴分别相交于A、B两点,与双曲线y=(x>0)相交于点P,PC⊥x轴于点C,且PC=2,点A的坐标为(-2,0).⑴求双曲线的解析式;⑵若点Q为双曲线上点P右侧的一点,且QH⊥x轴于H,当以点Q、C、H为顶点的三角与△AOB相似时,求点Q的坐标.21.(10分)为了迎接暑假的学生购物高峰,某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表甲乙进价(元/双)mm-20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.⑴求m的值⑵由于资金有限,该店能够购进的甲种运动鞋不超过105双,要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价-进价)不少于21700元,求该专卖店共有几种进货方案(只需计算种数,不用列举各种方案)?⑶在⑵的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货.22.(10分)等腰直角三角形ABC中,AC=BC=4,E为AC中点,以CE为斜边作如图所示等腰直角三角形CED.(1)观察猜想:如图1所示,过D作DF⊥AE于F,交AB于G,线段CD与BG的关系为;(2)探究证明:如图2所示,将△CDE绕点C顺时针旋转到如图所示位置,过D作DF⊥AE于F,过B作DE的平行线与直线FD交于点G,(1)中结论是否成立?请说明理由;(3)拓展延伸:如图3所示,当E、D、G共线时,直接写出DG的长度.23.(11分)如图所示,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0),D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2动点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为1个单位长度,运动时间为t秒.①如图1所示,过点P作PE⊥AB交AC于点E,过点E作EF⊥AD于点F,交抛物线于点G,点G关于抛物线对称轴的对称点为H,求当t为何值时,△HAC的面积为16;②如图2所示,连接EQ,过Q作QM⊥AC于M,在点P、Q运动的过程中,是否存在某个t,使得∠QEM=2∠QCE,若存在请直接写出相应的t值,若不存在说明理由.参考答案一、选择题(3分×10=30分)1.A2.C3.B4.D5.B6.B7.C8.A9.C10.D二、填空题(3分×5=15分)11.-212.80°13.m≥114.3-15.或三、解答题(本大题共8小题,满分75分)16.解:===当x=1时,原式=17.解:(1)(6+4)÷50%=20.所以王老师一共调查了20名学生,故答案为:20;(2)C类学生人数:20×25%=5(名),C类女生人数:5-2=3(名),D类学生占的百分比:1-15%-50%-25%=10%,D类学生人数:20×10%=2(名),D类男生人数:2-1=1(名),×360°=36°,故答案为:3;36°;补充条形统计图如图.(3)由题意画树形图如下:
从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选
两位同学恰好是一位男同学和一位女同学的结果共有3种.
所以P(所选两位同学恰好是一位男同学和一位女同学)==18.(1)证明:∵四边形ABCE为圆O的内接四边形,∴∠ABC=∠CED,∠DCE=∠BAE,
又AB=AC,∴∠ABC=∠ACB,∴∠CED=∠ACB,又∠AEB和∠ACB都为所对的圆周角,∴∠AEB=∠ACB,∴∠CED=∠AEB,∵AB=AC,CD=AC,∴AB=CD,
在△ABE和△CDE中,∴△ABE≌△CDE(AAS)(2)①60°;②19.解:由题意得:AD⊥CE,过点B作BM⊥CE,BF⊥EA,∵灯罩BC长为30cm,光线最佳时灯罩BC与水平线所成的角为30°,∵CM⊥MB,即三角形CMB为直角三角形,∴sin30°=∴CM=15cm,在直角三角形ABF中,sin60°=解得:BF=20∠ADC=∠BMD=∠BFD=90°,∴四边形BFDM为矩形,∴MD=BF,∴CE=CM+MD+DE=CM+BF+ED=15+20+2≈51.6cm.答:此时灯罩顶端C到桌面的高度CE是51.6cm.20.解:(1)把A(-2,0)代入y=ax+1中,求得a=∴y=x+1由PC=2,把y=2代入y=x+1中,得x=2,即P(2,2),把P代入y=得:k=4,则双曲线解析式为y=(2)设Q(m,n),∵Q(m,n)在y=上,∴n=当△QCH∽△BA中学自主招生数学试卷一、选择题(3分×10=30分)1.下列各数中,是5的相反数的是()A.-5B.5C.0.5D.0.22.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.3.人类已知最大的恒星是盾牌座UY,它的规模十分巨大,如果将盾牌座UY放在太阳系的中心,它的表面将接近土星轨道,半径约等于1.43344937×109km.那么这个数的原数是()A.143344937kmB.1433449370kmCmD.1.43344937km4.下列计算正确的是()A.2a-3a=-1B.(a2b3)3=a5b6C.a2·a3=a6D.a2+3a2=4a25.已知关于x的分式方程mx+=2有解,则m的取值范围是()A.m≤1且m≠0B.m≤1C.m≥-1D.m≥-1且m≠06.如图所示,该物体的主视图为()A.B.C.D.7.如图所示,在Rt△ABC中∠A=25°,∠ACB=90°,以点C为圆心,BC为半径的圆交AB于一点D,交AC于点E,则∠DCE的度数为()A.30°B.25°C.40°D.50°8.不等式组的解集在数轴上表示正确的是()A.B.C.D.9.如图所示,分别用两个质地均匀的转盘转得一个数,①号转盘表示数字2的扇形对应的圆角为120°,②号转盘表示数字3的扇形对应的圆心角也是120°,则转得的两个数之积为偶数的概率为()A.B.C.D.10.如图1所示,小明(点P)在操场上跑步,操场由两段半圆形弯道和两段直道构成,若小明从点A(右侧弯道起点)出发以顺时针方向沿着跑道行进.设行进的路程为x,小明到右侧半圆形弯道的圆心O的距离PO为y,可绘制出如图2所示函数图象,那么a-b的值应为()A.4B.π-1C.D.π二、填空题(3分×5=15分)11.(-3)0+=.12.如图所示,直线ABCD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=.13.二次函数y=x2-2mx+1在x≤1时y随x增大而减小,则m的取值范围是.14.如图所示,在平行四边形ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E.连接CE,则阴影部分的面积是.(结果保留π)15.如图所示,正方形ABCD中,AB=8,BE=DF=1,M是射线AD上的动点,点A关于直线EM的对称点为A,,当△A,FC为以FC为直角边的直角三角形时,对应的MA的长为.三、解答题(本大题共8小题,满分75分)16.(8分)先化简÷(x-),然后从-<x<的范围内选取一个合适的正整数作为x的值代入求值.17.(9分)陈老师为了了解所教班级学生完成数学纠错的具体情况,对本班部分学生进行了为期半年的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:⑴陈老师一共调查了多少名同学?⑵将条形统计图补充完整;⑶为了共同进步,陈老师想从被调查的A类学生中随机选取一位同学,再从D类学生中随机选取一位同学组成二人学习小组,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.18.(9分)如图所示,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC至点D,使CD=AC,连接AD交⊙O于点E,连接BE、CE,BE交AC于点F.⑴求证:CE=AE⑵填空:①当∠ABC=时,四边形AOCE是菱形;②若AE=,AB=,则DE的长为.19.(9分)如图所示,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,求此时灯罩顶端C到桌面的高度CE的长?(结果精确到0.1cm,参考数据:≈1.732)20.(9分)如图所示,直线y=ax+1与x轴、y轴分别相交于A、B两点,与双曲线y=(x>0)相交于点P,PC⊥x轴于点C,且PC=2,点A的坐标为(-2,0).⑴求双曲线的解析式;⑵若点Q为双曲线上点P右侧的一点,且QH⊥x轴于H,当以点Q、C、H为顶点的三角与△AOB相似时,求点Q的坐标.21.(10分)为了迎接暑假的学生购物高峰,某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表甲乙进价(元/双)mm-20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.⑴求m的值⑵由于资金有限,该店能够购进的甲种运动鞋不超过105双,要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价-进价)不少于21700元,求该专卖店共有几种进货方案(只需计算种数,不用列举各种方案)?⑶在⑵的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货.22.(10分)等腰直角三角形ABC中,AC=BC=4,E为AC中点,以CE为斜边作如图所示等腰直角三角形CED.(1)观察猜想:如图1所示,过D作DF⊥AE于F,交AB于G,线段CD与BG的关系为;(2)探究证明:如图2所示,将△CDE绕点C顺时针旋转到如图所示位置,过D作DF⊥AE于F,过B作DE的平行线与直线FD交于点G,(1)中结论是否成立?请说明理由;(3)拓展延伸:如图3所示,当E、D、G共线时,直接写出DG的长度.23.(11分)如图所示,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0),D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2动点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为1个单位长度,运动时间为t秒.①如图1所示,过点P作PE⊥AB交AC于点E,过点E作EF⊥AD于点F,交抛物线于点G,点G关于抛物线对称轴的对称点为H,求当t为何值时,△HAC的面积为16;②如图2所示,连接EQ,过Q作QM⊥AC于M,在点P、Q运动的过程中,是否存在某个t,使得∠QEM=2∠QCE,若存在请直接写出相应的t值,若不存在说明理由.参考答案一、选择题(3分×10=30分)1.A2.C3.B4.D5.B6.B7.C8.A9.C10.D二、填空题(3分×5=15分)11.-212.80°13.m≥114.3-15.或三、解答题(本大题共8小题,满分75分)16.解:===当x=1时,原式=17.解:(1)(6+4)÷50%=20.所以王老师一共调查了20名学生,故答案为:20;(2)C类学生人数:20×25%=5(名),C类女生人数:5-2=3(名),D类学生占的百分比:1-15%-50%-25%=10%,D类学生人数:20×10%=2(名),D类男生人数:2-1=1(名),×360°=36°,故答案为:3;36°;补充条形统计图如图.(3)由题意画树形图如下:
从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选
两位同学恰好是一位男同学和一位女同学的结果共有3种.
所以P(所选两位同学恰好是一位男同学和一位女同学)==18.(1)证明:∵四边形ABCE为圆O的内接四边形,∴∠ABC=∠CED,∠DCE=∠BAE,
又AB=AC,∴∠ABC=∠ACB,∴∠CED=∠ACB,又∠AEB和∠ACB都为所对的圆周角,∴∠AEB=∠ACB,∴∠CED=∠AEB,∵AB=AC,CD=AC,∴AB=CD,
在△ABE和△CDE中,∴△ABE≌△CDE(AAS)(2)①60°;②19.解:由题意得:AD⊥CE,过点B作BM⊥CE,BF⊥EA,∵灯罩BC长为30cm,光线最佳时灯罩BC与水平线所成的角为30°,∵CM⊥MB,即三角形CMB为直角三角形,∴sin30°=∴CM=15cm,在直角三角形ABF中,sin60°=解得:BF=20∠ADC=∠BMD=∠BFD=90°,∴四边形BFDM为矩形,∴MD=BF,∴CE=CM+MD+DE=CM+BF+ED=15+20+2≈51.6cm.答:此时灯罩顶端C到桌面的高度CE是51.6cm.20.解:(1)把A(-2,0)代入y=ax+1中,求得a=∴y=x+1由PC=2,把y=2代入y=x+1中,得x=2,即P(2,2),把P代入y=得:k=4,则双曲线解析式为y=(2)设Q(m,n),∵Q(m,n)在y=上,∴n=当△QCH∽△BA中学自主招生数学试卷一、选择题(3分×10=30分)1.下列各数中,是5的相反数的是()A.-5B.5C.0.5D.0.22.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.3.人类已知最大的恒星是盾牌座UY,它的规模十分巨大,如果将盾牌座UY放在太阳系的中心,它的表面将接近土星轨道,半径约等于1.43344937×109km.那么这个数的原数是()A.143344937kmB.1433449370kmCmD.1.43344937km4.下列计算正确的是()A.2a-3a=-1B.(a2b3)3=a5b6C.a2·a3=a6D.a2+3a2=4a25.已知关于x的分式方程mx+=2有解,则m的取值范围是()A.m≤1且m≠0B.m≤1C.m≥-1D.m≥-1且m≠06.如图所示,该物体的主视图为()A.B.C.D.7.如图所示,在Rt△ABC中∠A=25°,∠ACB=90°,以点C为圆心,BC为半径的圆交AB于一点D,交AC于点E,则∠DCE的度数为()A.30°B.25°C.40°D.50°8.不等式组的解集在数轴上表示正确的是()A.B.C.D.9.如图所示,分别用两个质地均匀的转盘转得一个数,①号转盘表示数字2的扇形对应的圆角为120°,②号转盘表示数字3的扇形对应的圆心角也是120°,则转得的两个数之积为偶数的概率为()A.B.C.D.10.如图1所示,小明(点P)在操场上跑步,操场由两段半圆形弯道和两段直道构成,若小明从点A(右侧弯道起点)出发以顺时针方向沿着跑道行进.设行进的路程为x,小明到右侧半圆形弯道的圆心O的距离PO为y,可绘制出如图2所示函数图象,那么a-b的值应为()A.4B.π-1C.D.π二、填空题(3分×5=15分)11.(-3)0+=.12.如图所示,直线ABCD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=.13.二次函数y=x2-2mx+1在x≤1时y随x增大而减小,则m的取值范围是.14.如图所示,在平行四边形ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E.连接CE,则阴影部分的面积是.(结果保留π)15.如图所示,正方形ABCD中,AB=8,BE=DF=1,M是射线AD上的动点,点A关于直线EM的对称点为A,,当△A,FC为以FC为直角边的直角三角形时,对应的MA的长为.三、解答题(本大题共8小题,满分75分)16.(8分)先化简÷(x-),然后从-<x<的范围内选取一个合适的正整数作为x的值代入求值.17.(9分)陈老师为了了解所教班级学生完成数学纠错的具体情况,对本班部分学生进行了为期半年的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:⑴陈老师一共调查了多少名同学?⑵将条形统计图补充完整;⑶为了共同进步,陈老师想从被调查的A类学生中随机选取一位同学,再从D类学生中随机选取一位同学组成二人学习小组,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.18.(9分)如图所示,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC至点D,使CD=AC,连接AD交⊙O于点E,连接BE、CE,BE交AC于点F.⑴求证:CE=AE⑵填空:①当∠ABC=时,四边形AOCE是菱形;②若AE=,AB=,则DE的长为.19.(9分)如图所示,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,求此时灯罩顶端C到桌面的高度CE的长?(结果精确到0.1cm,参考数据:≈1.732)20.(9分)如图所示,直线y=ax+1与x轴、y轴分别相交于A、B两点,与双曲线y=(x>0)相交于点P,PC⊥x轴于点C,且PC=2,点A的坐标为(-2,0).⑴求双曲线的解析式;⑵若点Q为双曲线上点P右侧的一点,且QH⊥x轴于H,当以点Q、C、H为顶点的三角与△AOB相似时,求点Q的坐标.21.(10分)为了迎接暑假的学生购物高峰,某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表甲乙进价(元/双)mm-20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.⑴求m的值⑵由于资金有限,该店能够购进的甲种运动鞋不超过105双,要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价-进价)不少于21700元,求该专卖店共有几种进货方案(只需计算种数,不用列举各种方案)?⑶在⑵的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货.22.(10分)等腰直角三角形ABC中,AC=BC=4,E为AC中点,以CE为斜边作如图所示等腰直角三角形CED.(1)观察猜想:如图1所示,过D作DF⊥AE于F,交AB于G,线段CD与BG的关系为;(2)探究证明:如图2所示,将△CDE绕点C顺时针旋转到如图所示位置,过D作DF⊥AE于F,过B作DE的平行线与直线FD交于点G,(1)中结论是否成立?请说明理由;(3)拓展延伸:如图3所示,当E、D、G共线时,直接写出DG的长度.23.(11分)如图所示,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0),D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2动点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为1个单位长度,运动时间为t秒.①如图1所示,过点P作PE⊥AB交AC于点E,过点E作EF⊥AD于点F,交抛物线于点G,点G关于抛物线对称轴的对称点为H,求当t为何值时,△HAC的面积为16;②如图2所示,连接EQ,过Q作QM⊥AC于M,在点P、Q运动的过程中,是否存在某个t,使得∠QEM=2∠QCE,若存在请直接写出相应的t值,若不存在说明理由.参考答案一、选择题(3分×10=30分)1.A2.C3.B4.D5.B6.B7.C8.A9.C10.D二、填空题(3分×5=15分)11.-212.80°13.m≥114.3-15.或三、解答题(本大题共8小题,满分75分)16.解:===当x=1时,原式=17.解:(1)(6+4)÷50%=20.所以王老师一共调查了20名学生,故答案为:20;(2)C类学生人数:20×25%=5(名),C类女生人数:5-2=3(名),D类学生占的百分比:1-15%-50%-25%=10%,D类学生人数:20×10%=2(名),D类男生人数:2-1=1(名),×360°=36°,故答案为:3;36°;补充条形统计图如图.(3)由题意画树形图如下:
从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选
两位同学恰好是一位男同学和一位女同学的结果共有3种.
所以P(所选两位同学恰好是一位男同学和一位女同学)==18.(1)证明:∵四边形ABCE为圆O的内接四边形,∴∠ABC=∠CED,∠DCE=∠BAE,
又AB=AC,∴∠ABC=∠ACB,∴∠CED=∠ACB,又∠AEB和∠ACB都为所对的圆周角,∴∠AEB=∠ACB,∴∠CED=∠AEB,∵AB=AC,CD=AC,∴AB=CD,
在△ABE和△CDE中,∴△ABE≌△CDE(AAS)(2)①60°;②19.解:由题意得:AD⊥CE,过点B作BM⊥CE,BF⊥EA,∵灯罩BC长为30cm,光线最佳时灯罩BC与水平线所成的角为30°,∵CM⊥MB,即三角形CMB为直角三角形,∴sin30°=∴CM=15cm,在直角三角形ABF中,sin60°=解得:BF=20∠ADC=∠BMD=∠BFD=90°,∴四边形BFDM为矩形,∴MD=BF,∴CE=CM+MD+DE=CM+BF+ED=15+20+2≈51.6cm.答:此时灯罩顶端C到桌面的高度CE是51.6cm.20.解:(1)把A(-2,0)代入y=ax+1中,求得a=∴y=x+1由PC=2,把y=2代入y=x+1中,得x=2,即P(2,2),把P代入y=得:k=4,则双曲线解析式为y=(2)设Q(m,n),∵Q(m,n)在y=上,∴n=当△QCH∽△BA中学自主招生数学试卷一、选择题(3分×10=30分)1.下列各数中,是5的相反数的是()A.-5B.5C.0.5D.0.22.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.3.人类已知最大的恒星是盾牌座UY,它的规模十分巨大,如果将盾牌座UY放在太阳系的中心,它的表面将接近土星轨道,半径约等于1.43344937×109km.那么这个数的原数是()A.143344937kmB.1433449370kmCmD.1.43344937km4.下列计算正确的是()A.2a-3a=-1B.(a2b3)3=a5b6C.a2·a3=a6D.a2+3a2=4a25.已知关于x的分式方程mx+=2有解,则m的取值范围是()A.m≤1且m≠0B.m≤1C.m≥-1D.m≥-1且m≠06.如图所示,该物体的主视图为()A.B.C.D.7.如图所示,在Rt△ABC中∠A=25°,∠ACB=90°,以点C为圆心,BC为半径的圆交AB于一点D,交AC于点E,则∠DCE的度数为()A.30°B.25°C.40°D.50°8.不等式组的解集在数轴上表示正确的是()A.B.C.D.9.如图所示,分别用两个质地均匀的转盘转得一个数,①号转盘表示数字2的扇形对应的圆角为120°,②号转盘表示数字3的扇形对应的圆心角也是120°,则转得的两个数之积为偶数的概率为()A.B.C.D.10.如图1所示,小明(点P)在操场上跑步,操场由两段半圆形弯道和两段直道构成,若小明从点A(右侧弯道起点)出发以顺时针方向沿着跑道行进.设行进的路程为x,小明到右侧半圆形弯道的圆心O的距离PO为y,可绘制出如图2所示函数图象,那么a-b的值应为()A.4B.π-1C.D.π二、填空题(3分×5=15分)11.(-3)0+=.12.如图所示,直线ABCD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=.13.二次函数y=x2-2mx+1在x≤1时y随x增大而减小,则m的取值范围是.14.如图所示,在平行四边形ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E.连接CE,则阴影部分的面积是.(结果保留π)15.如图所示,正方形ABCD中,AB=8,BE=DF=1,M是射线AD上的动点,点A关于直线EM的对称点为A,,当△A,FC为以FC为直角边的直角三角形时,对应的MA的长为.三、解答题(本大题共8小题,满分75分)16.(8分)先化简÷(x-),然后从-<x<的范围内选取一个合适的正整数作为x的值代入求值.17.(9分)陈老师为了了解所教班级学生完成数学纠错的具体情况,对本班部分学生进行了为期半年的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:⑴陈老师一共调查了多少名同学?⑵将条形统计图补充完整;⑶为了共同进步,陈老师想从被调查的A类学生中随机选取一位同学,再从D类学生中随机选取一位同学组成二人学习小组,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.18.(9分)如图所示,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC至点D,使CD=AC,连接AD交⊙O于点E,连接BE、CE,BE交AC于点F.⑴求证:CE=AE⑵填空:①当∠ABC=时,四边形AOCE是菱形;②若AE=,AB=,则DE的长为.19.(9分)如图所示,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,求此时灯罩顶端C到桌面的高度CE的长?(结果精确到0.1cm,参考数据:≈1.732)20.(9分)如图所示,直线y=ax+1与x轴、y轴分别相交于A、B两点,与双曲线y=(x>0)相交于点P,PC⊥x轴于点C,且PC=2,点A的坐标为(-2,0).⑴求双曲线的解析式;⑵若点Q为双曲线上点P右侧的一点,且QH⊥x轴于H,当以点Q、C、H为顶点的三角与△AOB相似时,求点Q的坐标.21.(10分)为了迎接暑假的学生购物高峰,某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表甲乙进价(元/双)mm-20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.⑴求m的值⑵由于资金有限,该店能够购进的甲种运动鞋不超过105双,要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价-进价)不少于21700元,求该专卖店共有几种进货方案(只需计算种数,不用列举各种方案)?⑶在⑵的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货.22.(10分)等腰直角三角形ABC中,AC=BC=4,E为AC中点,以CE为斜边作如图所示等腰直角三角形CED.(1)观察猜想:如图1所示,过D作DF⊥AE于F,交AB于G,线段CD与BG的关系为;(2)探究证明:如图2所示,将△CDE绕点C顺时针旋转到如图所示位置,过D作DF⊥AE于F,过B作DE的平行线与直线FD交于点G,(1)中结论是否成立?请说明理由;(3)拓展延伸:如图3所示,当E、D、G共线时,直接写出DG的长度.23.(11分)如图所示,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0),D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2动点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为1个单位长度,运动时间为t秒.①如图1所示,过点P作PE⊥AB交AC于点E,过点E作EF⊥AD于点F,交抛物线于点G,点G关于抛物线对称轴的对称点为H,求当t为何值时,△HAC的面积为16;②如图2所示,连接EQ,过Q作QM⊥AC于M,在点P、Q运动的过程中,是否存在某个t,使得∠QEM=2∠QCE,若存在请直接写出相应的t值,若不存在说明理由.参考答案一、选择题(3分×10=30分)1.A2.C3.B4.D5.B6.B7.C8.A9.C10.D二、填空题(3分×5=15分)11.-212.80°13.m≥114.3-15.或三、解答题(本大题共8小题,满分75分)16.解:===当x=1时,原式=17.解:(1)(6+4)÷50%=20.所以王老师一共调查了20名学生,故答案为:20;(2)C类学生人数:20×25%=5(名),C类女生人数:5-2=3(名),D类学生占的百分比:1-15%-50%-25%=10%,D类学生人数:20×10%=2(名),D类男生人数:2-1=1(名),×360°=36°,故答案为:3;36°;补充条形统计图如图.(3)由题意画树形图如下:
从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选
两位同学恰好是一位男同学和一位女同学的结果共有3种.
所以P(所选两位同学恰好是一位男同学和一位女同学)==18.(1)证明:∵四边形ABCE为圆O的内接四边形,∴∠ABC=∠CED,∠DCE=∠BAE,
又AB=AC,∴∠ABC=∠ACB,∴∠CED=∠ACB,又∠AEB和∠ACB都为所对的圆周角,∴∠AEB=∠ACB,∴∠CED=∠AEB,∵AB=AC,CD=AC,∴AB=CD,
在△ABE和△CDE中,∴△ABE≌△CDE(AAS)(2)①60°;②19.解:由题意得:AD⊥CE,过点B作BM⊥CE,BF⊥EA,∵灯罩BC长为30cm,光线最佳时灯罩BC与水平线所成的角为30°,∵CM⊥MB,即三角形CMB为直角三角形,∴sin30°=∴CM=15cm,在直角三角形ABF中,sin60°=解得:BF=20∠ADC=∠BMD=∠BFD=90°,∴四边形BFDM为矩形,∴MD=BF,∴CE=CM+MD+DE=CM+BF+ED=15+20+2≈51.6cm.答:此时灯罩顶端C到桌面的高度CE是51.6cm.20.解:(1)把A(-2,0)代入y=ax+1中,求得a=∴y=x+1由PC=2,把y=2代入y=x+1中,得x=2,即P(2,2),把P代入y=得:k=4,则双曲线解析式为y=(2)设Q(m,n),∵Q(m,n)在y=上,∴n=当△QCH∽△BA中学自主招生数学试卷一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.(3分)﹣3的相反数是()A.3 B.﹣3 C.±3 D.2.(3分)下列计算正确的是()A.2a+3b=5ab B.=±6 C.a2b÷2ab=a2 D.(2ab2)3=8a3b63.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A. B. C. D.4.(3分)一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数 B.众数 C.中位数 D.方差5.(3分)如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20° B.25° C.40° D.50°6.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A. B.2 C. D.7.(3分)已知实数x、y满足:x﹣y﹣3=0和2y3+y﹣6=0.则﹣y2的值为()A.0 B. C.1 D.8.(3分)如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A.x>2 B.0<x<4 C.﹣1<x<4 D.x<﹣1或x>4二、填空题(本大题共10小题,每小题3分,共30分.)9.(3分)“五一”小长假期间,扬州市区8家主要封闭式景区共接待游客528600人次,同比增长20.56%.用科学记数法表示528600为.10.(3分)若有意义,则x的取值范围是.11.(3分)分解因式:mx2﹣4m=.12.(3分)若方程x2+kx+9=0有两个相等的实数根,则k=.13.(3分)一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.14.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是.15.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为.16.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.17.(3分)如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=.18.(3分)如图,⊙O的直径AB=8,C为弧AB的中点,P为弧BC上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,连接BD,则BD的最小值是.三、解答题(本大题有10小题,共96分.)19.(8分)(1)计算:|﹣3|﹣tan30°+20180﹣()﹣1;(2)化简:(1+a)(1﹣a)+a(a﹣2).20.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.21.(8分)若关于x的分式方程=1的解是正数,求m的取值范围.22.(8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是.23.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)24.(10分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.25.(10分)观察下表:我们把某一格中所有字母相加得到的多项式称为特征多项式,例如:第1格的“特征多项式”为x+4y.回答下列问题:(1)第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为2,第2格的“特征多项式”的值为﹣6.①求x,y的值;②在①的条件下,第n格的“特征多项式的值”随着n的变化而变化,求“特征多项式的值”的最大值及此时n值.26.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,E为BC的中点,连接DE.(1)求证:DE为⊙O的切线;(2)如果⊙O的半径为3,ED=4,延长EO交⊙O于F,连接DF,与OA交于点G,求OG的长.27.(12分)在平面直角坐标系中,点O为原点,点A的坐标为(﹣8,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=45°,OE=OA,求直线EF的函数表达式;(2)如图3,若α为锐角,且tanα=,当EA⊥x轴时,正方形对角线EG与OF相交于点M,求线段AM的长;(3)当正方形OEFG的顶点F落在y轴正半轴上时,直线AE与直线FG相交于点P,是否存在△OEP的两边之比为:1?若存在,求出点P的坐标;若不存在,试说明理由.28.如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.
参考答案与试题解析一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:A.2.【分析】直接利用合并同类项法则以及算术平方根、整式的除法运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、=6,故此选项错误;C、a2b÷2ab=a,故此选项错误;D、(2ab2)3=8a3b6,正确.故选:D.3.【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【解答】解:从上面看,图2的俯视图是正方形,有一条对角线.故选:C.4.【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是3,添加数字3后平均数仍为3,故A与要求不符;B、原来数据的众数是3,添加数字3后众数仍为3,故B与要求不符;C、原来数据的中位数是3,添加数字3后中位数仍为3,故C与要求不符;D、原来数据的方差==,添加数字3后的方差==,故方差发生了变化.故选:D.5.【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠PAO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB是⊙O的直径,直线PA与⊙O相切于点A,∴∠PAO=90°.又∵∠P=40°,∴∠POA=50°,∴∠ABC=∠POA=25°.故选:B.6.【分析】求出AB=3,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.7.【分析】根据x﹣y﹣3=0和2y3+y﹣6=0,可以得到x与y的关系和y2﹣的值,从而可以求得所求式子的值.【解答】解:∵x﹣y﹣3=0和2y3+y﹣6=0,∴x=y+3,y2+﹣=0,∴y2﹣=﹣∴﹣y2==1+=1﹣(﹣)=1+=,故选:D.8.【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【解答】解:∵y3=(kx+b)(mx+n),y<0,∴(kx+b)(mx+n)<0,∵y1=kx+b,y2=mx+n,即y1•y2<0,有以下两种情况:(1)当y1>0,y2<0时,此时,x<﹣1;(2)当y1<0,y2>0时,此时,x>4,故选:D.二、填空题(本大题共10小题,每小题3分,共30分.)9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:528600=5.286×105,故答案为:5.286×10510.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.11.【分析】首先提取公因式m,进而利用平方差公式分解因式即可.【解答】解:mx2﹣4m=m(x2﹣4)=m(x+2)(x﹣2).故答案为:m(x+2)(x﹣2).12.【分析】根据根判别式△=b2﹣4ac的意义得到△=0,即k2﹣4×1×9=0,然后解方程即可.【解答】解:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±6.故答案为±6.13.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.14.【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8.故答案为:﹣8.15.【分析】根据平行线的性质可得出∠3=∠4+∠5,结合对顶角相等可得出∠3=∠1+∠2,代入∠1=30°、∠3=45°,即可求出∠2的度数.【解答】解:给各角标上序号,如图所示.∵∠3=∠4+∠5,∠1=∠4,∠2=∠5,∴∠3=∠1+∠2.又∵∠1=30°,∠3=45°,∴∠2=15°.故答案为:15°.16.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.17.【分析】依据题意可得,A,C之间的水平距离为6,点Q与点P的水平距离为7,A,B之间的水平距离为2,双曲线解析式为y=,依据点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,点Q“、点Q'离x轴的距离相同,都为4,即点Q的纵坐标n=4,即可得到mn的值.【解答】解:由图可得,A,C之间的水平距离为6,2018÷6=336…2,由抛物线y=﹣x2+4x+2可得,顶点B(2,6),即A,B之间的水平距离为2,∴点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,由抛物线解析式可得AO=2,即点C的纵坐标为2,∴C(6,2),∴k=2×6=12,∴双曲线解析式为y=,2025﹣2018=7,故点Q与点P的水平距离为7,∵点P'、Q“之间的水平距离=(2+7)﹣(2+6)=1,∴点Q“的横坐标=2+1=3,∴在y=中,令x=3,则y=4,∴点Q“、点Q'离x轴的距离相同,都为4,即点Q的纵坐标n=4,∴mn=6×4=24,故答案为:24.18.【分析】以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,依据∠ADC=135°,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据△ACQ中,AQ=4,【解答】解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,连接AC,BC,BQ.∵⊙O的直径为AB,C为的中点,∴∠APC=45°,又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的,又∵AB=8,C为的中点,∴△ACB是等腰直角三角形,∴AC=4,∴△ACQ中,AQ=4,∴BQ==4,∵BD≥BQ﹣DQ,∴BD的最小值为4﹣4.故答案为:4﹣4.三、解答题(本大题有10小题,共96分.)19.【分析】(1)根据实数的混合计算解答即可;(2)根据整式的混合计算解答即可.【解答】解:(1)原式==﹣1.(2)原式=1﹣a2+a2﹣2a=1﹣2a20.【分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数;(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数;【解答】解:(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为:200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.21.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解为正数确定出m的范围即可.【解答】解:去分母得:1+m=x﹣2,解得:x=m+3,由分式方程的解为正数,得到m+3>0,且m+3≠2,解得:m>﹣3且m≠﹣1.22.【分析】(1)画树状图列出所有等可能结果,从中找到到第二个路口时第一次遇到红灯的结果数,根据概率公式计算可得.(2)根据在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为=()2可得答案.【解答】解:(1)画树状图如下:由树状图知,共有9种等可能结果,其中到第二个路口时第一次遇到红灯的结果数为2,所以到第二个路口时第一次遇到红灯的概率为;(2)∵在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为=()2,∴到第n个路口都没有遇到红灯的概率为()n,故答案为:()n.23.【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【解答】解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×=2(米),∵DH=1.5,∴CD=2+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==(4+)(米),答:拉线CE的长约为(4+)米.24.【分析】(1)由四边形ABCD为平行四边形,利用平行四边形的性质得到对边平行且相等,对角相等,再由垂直的定义得到一对直角相等,利用等式的性质得到一对角相等,利用ASA即可得证;(2)过D作DH垂直于AB,在直角三角形ADH中,利用30度所对的直角边等于斜边的一半得到AD=2DH,在直角三角形DEB中,利用斜边上的中线等于斜边的一半得到EB=2DH,易得四边形EBFD为平行四边形,利用平行四边形的对边相等得到EB=DF,等量代换即可得证.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,AD∥CB,AB∥CD,∴∠ADB=∠CBD,∵ED⊥DB,FB⊥BD,∴∠EDB=∠FBD=90°,∴∠ADE=∠CBF,在△AED和△CFB中,,∴△AED≌△CFB(ASA);(2)作DH⊥AB,垂足为H,在Rt△ADH中,∠A=30°,∴AD=2DH,在Rt△DEB中,∠DEB=45°,∴EB=2DH,∵ED⊥DB,FB⊥BD.∴DE∥BF,∵AB∥CD,∴四边形EBFD为平行四边形,∴FD=EB,∴DA=DF.25.【分析】(1)利用已知表格中x,y个数变化规律得出第2格的“特征多项式”以及第n格的“特征多项式”;(2)①利用(1)中所求得出关于x,y的等式组成方程组求出答案;②利用二次函数最值求法得出答案.【解答】解:(1)由表格中数据可得:第4格的“特征多项式”为:16x+25y,第n格的“特征多项式”为:n2x+(n+1)2y(n为正整数);故答案为:16x+25y,n2x+(n+1)2y(n为正整数);(2)①由题意可得:,解得:答:x的值为﹣6,y的值为2.②设W=n2x+(n+1)2y当x=﹣6,y=2时:W=﹣6n2+2(n+1)2=,此函数开口向下,对称轴为,∴当时,W随n的增大而减小,又∵n为正整数∴当n=1时,W有最大值,W最大=﹣4×(1﹣)2+3=2,即:第1格的特征多项式的值有最大值,最大值为2.26.【分析】(1)首先连接OD,由BE=EC,CO=OA,得出OE∥AB,根据平行线与等腰三角形的性质,易证得△COE≌△DOE,即可得∠ODE=∠OCE=90°,则可证得ED为⊙O的切线;(2)只要证明OE∥AB,推出,由此构建方程即可解决问题;【解答】解:(1)证明:连接OD,∵E为BC的中点,AC为直径,∴BE=EC,CO=OA,∴OE∥AB,∴∠COE=∠CAD,∠EOD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠COE=∠DOE,在△COE和△DOE中,,∴△COE≌△DOE(SAS),∴∠ODE=∠OCE=90°,∴ED⊥OD,∴ED是圆O的切线;(2)连接CD;由题意EC、ED是⊙O的切线,∴EC=ED,∵OC=OD,∴OE⊥CD,∵AC是直径,∴∠CDA=90°,∴CD⊥AB,∴OE∥AB,∴,在Rt△ECO中,EO==5,∵∠EOC=∠CAD,∴cos∠CAD=cos∠EOC=,∴AD=,设OG=x,则有,∴x=,∴OG=.27.【分析】(1)求出E、F两点坐标,利用待定系数法即可解决问题;(2)如图3中,作MH⊥OA于H,MK⊥AE交AE的延长线于K.只要证明四边形AOMK是正方形,证明AE+OA=2AH即可解决问题;(3)如图2中,设F(0,2a),则E(﹣a,a).构建一次函数利用方程组求出交点P坐标,分三种情形讨论求解即可;【解答】解:(1)∵OE=OA=8,α=45°,∴E(﹣4,4),F(0,8),设直线EF的解析式为y=kx+b,则有,解得∴直线EF的解析式为y=x+8.(2)如图3中,作MH⊥OA于H,MK⊥AE交AE的延长线于K.在Rt△AEO中,tan∠AOE==,OA=8,∴AE=4,∵四边形EOGF是正方形,∴∠EMO=90°,∵∠EAO=∠EMO=90°,∴E、A、O、M四点共圆,∴∠EAM=∠EOM=45°,∴∠MAK=∠MAH=45°,∵MK⊥AE,MH⊥OA,∴MK=MH,四边形KAOM是正方形,∵EM=OM,∴△MKE≌△MHO,∴EK=OH,∴AK+AH=2AH=AE+EK+OA﹣OH=12,∴AH=6,∴AM=AH=6.(3)如图2中,设F(0,2a),则E(﹣a,a).∵A(﹣8,0),E(﹣a,a),∴直线AP的解析式为y=x+,直线FG的解析式为y=﹣x+2a,由,解得,∴P(,).①当PO=OE时,∴PO2=2OE2,则有:+=4a2,解得a=4或﹣4(舍弃)或0(舍弃),此时P(0,8).②当PO=PE时,则有:+=2[(+a)2+(﹣a)2],解得:a=4或12,此时P(0,8)或(﹣24,48),③当PE=EO时,[(+a)2+(﹣a)2]=4a2,解得a=8或0(舍弃),∴P(﹣8,24)综上所述,满足条件的点P的坐标为(0,8),(﹣8,24),(﹣24,48).28.【分析】(1)由点C的坐标为(0,3),可知﹣9a=3,故此可求得a的值,然后令y=0得到关于x的方程,解关于x的方程可得到点A和点B的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO=60°,依据AE为∠BAC的角平分线可求得∠DAO=30°,然后利用特殊锐角三角函数值可求得OD=1,则可得到点D的坐标.设点P的坐标为(,a).依据两点的距离公式可求得AD、AP、DP的长,然后分为AD=PA、AD=DP、AP=DP三种情况列方程求解即可;(3)设直线MN的解析式为y=kx+1,接下来求得点M和点N的横坐标,于是可得到AN的长,然后利用特殊锐角三角函数值可求得AM的长,最后将AM和AN的长代入化简即可.【解答】解:(1)∵C(0,3).∴﹣9a=3,解得:a=﹣.令y=0得:ax2﹣2ax﹣9a=0,∵a≠0,∴x2﹣2x﹣9=0,解得:x=﹣或x=3.∴点A的坐标为(﹣,0),B(3,0).∴抛物线的对称轴为x=.(2)∵OA=,OC=3,∴tan∠CAO=,∴∠CAO=60°.∵AE为∠BAC的平分线,∴∠DAO=30°.∴DO=AO=1.∴点D的坐标为(0,1)设点P的坐标为(,a).依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a﹣1)2.当AD=PA时,4=12+a2,方程无解.当AD=DP时,4=3+(a﹣1)2,解得a=0或a=2(舍去),∴点P的坐标为(,0).当AP=DP时,12+a2=3+(a﹣1)2,解得a=﹣4.∴点P的坐标为(,﹣4).综上所述,点P的坐标为(,0)或(,﹣4).(3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:﹣m+3=0,解得:m=,∴直线AC的解析式为y=x+3.设直线MN的解析式为y=kx+1.把y=0代入y=kx+1得:kx+1=0,解得:x=﹣,∴点N的坐标为(﹣,0).∴AN=﹣+=.将y=x+3与y=kx+1联立解得:x=.∴点M的横坐标为.过点M作MG⊥x轴,垂足为G.则AG=+.∵∠MAG=60°,∠AGM=90°,∴AM=2AG=+2=.∴+=+=+===.中学自主招生数学试卷一.选择题(满分24分,每小题3分)1.下列说法正确的是()A.0是无理数 B.π是有理数 C.4是有理数 D.是分数2.12月2日,2018年第十三届南宁国际马拉松比赛开跑,2.6万名跑者继续刷新南宁马拉松的参与人数纪录!把2.6万用科学记数法表示为()A.0.26×103 B.2.6×103 C.0.26×104 D.2.6×1043.下列计算错误的是()A.4x3•2x2=8x5 B.a4﹣a3=a C.(﹣x2)5=﹣x10 D.(a﹣b)2=a2﹣2ab+b24.已知一个几何体及其左视图如图所示,则该几何体的主视图是()A. B. C. D.5.如图,下列条件中,不能判断直线a∥b的是()A.∠1+∠3=180° B.∠2=∠3 C.∠4=∠5 D.∠4=∠66.解分式方程=﹣2时,去分母变形正确的是()A.﹣1+x=﹣1﹣2(x﹣2) B.1﹣x=1﹣2(x﹣2) C.﹣1+x=1+2(2﹣x) D.1﹣x=﹣1﹣2(x﹣2)7.数学课上,小明进行了如下的尺规作图(如图所示):(1)在△AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;(2)分别以点D、E为圆心,以大于DE为半径作弧,两弧交于△AOB内的一点C;(3)作射线OC交AB边于点P.那么小明所求作的线段OP是△AOB的()A.一条中线 B.一条高 C.一条角平分线 D.不确定8.如图,平面内一个⊙O半径为4,圆上有两个动点A、B,以AB为边在圆内作一个正方形ABCD,则OD的最小值是()A.2 B. C.2﹣2 D.4﹣4二.填空题(满分30分,每小题3分)9.若a,b都是实数,b=+﹣2,则ab的值为.10.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC的余弦值是.11.因式分解:9a3b﹣ab=.12.已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是.13.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为.14.如图,一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,则关于x的不等式ax+b<0的解集是.15.已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是.16.反比例函数y=﹣图象上三点的坐标分别为A(﹣1,y1),B(1,y2),C(3,y3),则y1,y2,y3的大小关系是(用“>”连接)17.如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA的延长线与⊙O的交点,则图中阴影部分的面积是.(结果保留π)18.如图1,在等边三角形ABC中,点P为BC边上的任意一点,且∠APD=60°,PD交AC于点D,设线段PB的长度为x,CD的长度为y,若y与x的函数关系的大致图象如图2,则等边三角形ABC的面积为.三.解答题19.(8分)(1)计算:2cos60°﹣(﹣π)0+﹣()﹣2(2)解不等式组:,并求不等式组的整数解.20.(8分)先化简,再求值:()•(x2﹣1),其中x是方程x2﹣4x+3=0的一个根.21.(8分)初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?22.(8分)现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶.其中甲投放了一袋垃圾,乙投放了两袋垃圾.(1)直接写出甲投放的垃圾恰好是“厨余垃圾”的概率;(2)求乙投放的两袋垃
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智慧农业农业科技项目策划书
- 新疆吐鲁番市高昌区亚尔镇中学2024-2025学年数学三下期末联考模拟试题含解析
- 版临时场地租用合同
- 东乡区合同交易中心
- 长沙二手车买卖合同范本
- 企业饮用水采购合同集中采购
- 不可撤销买卖合同模板
- 第十一课 确立人生目标(2课时)公开课一等奖创新教案七年级道德与法治上册
- 幼儿表演性舞蹈《边走边唱》
- 宁波市北仑区二年级数学(上册)期末测试卷
- 员工食堂就餐协议书
- 创伤紧急救护知识课件
- 医院单位单位内部控制自我评价报告
- 湖北省第十届湖北省高三(4月)调研模拟考试数学试题及答案
- 2025年03月广东深圳市光明区科技创新局公开招聘专干5人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 内蒙古通辽市科左中旗实验小学2025届数学三下期末质量检测试题含解析
- 高温急救知识培训
- 学前教育学 课件 第1、2章 绪论;学前教育的目标、内容的方法
- 2025北京丰台高三一模物理试题及答案
- 江南美术遗产融入美育的数智化路径探索
- 西雅图驾驶证考题及答案
评论
0/150
提交评论