第五单元《圆》教材解析-人教版数学六年级上册_第1页
第五单元《圆》教材解析-人教版数学六年级上册_第2页
第五单元《圆》教材解析-人教版数学六年级上册_第3页
第五单元《圆》教材解析-人教版数学六年级上册_第4页
第五单元《圆》教材解析-人教版数学六年级上册_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版数学六年级上册《圆》教材解析一、教材介绍本单元的内容是在学生已经学习了长方形、正方形等平面图形以及它们的周长、面积计算,直观的认识圆的基础上进行教学的,是小学阶段的最后一个认识平面图形的单元。圆这个平面图形与以往学习的平面图形有显著的不同,长方形、正方形、三角形、平行四边形、梯形等都是直线图形,而圆是曲线图形。由此,教学将从对直线图形的研究过渡到对曲线图形的研究,这对学生而言是一种跨越与挑战。因为无论是研究曲线图形的思想还是方法,与直线图形相比,都有显著的变化和提升。因此,通过对圆的研究教学,不仅要让学生掌握圆的一些基础知识,还要让学生感受与体悟“化曲为直”“等积变换”“极限”等数学思想方法,以促进与发展学生的数学思想方法和问题解决的能力。本单元的内容主要有:圆的认识、圆的周长、圆的面积、扇形的认识等。二、课标解读《义务教育数学课程标准(2011年版)》在“学段目标”的“第二学段”中提出“探索一些图形的形状、大小和位置关系,了解一些几何体和平面图形的基本特征;体验简单图形的运动过程,能在方格纸上画出简单图形运动后的图形,了解确定物体位置的一些基本方法;掌握测量、识图和画图的基本方法”“在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,能比较清楚地表达自己的思考过程与结果”“在运用数学知识和方法解决问题的过程中,认识数学的价值”。

《义务教育数学课程标准(2011年版)》在“课程内容”的“第一学段”中提出“能辨认长方形、正方形、三角形、平行四边形、圆等简单图形”“会用长方形、正方形、三角形、平行四边形或圆拼图”;又在“第二学段”中指出“通过观察、操作,认识平行四边形、梯形和圆,知道扇形,会用圆规画圆”“通过操作,了解圆的周长与直径的比为定值,掌握圆的周长公式;探索并掌握圆的面积公式,并能解决简单的实际问题”“通过观察、操作等活动,进一步认识轴对称图形及其对称轴,能在方格纸上画出轴对称图形的对称轴;能在方格纸上补全一个简单的轴对称图形”“能从平移、旋转和轴对称的角度欣赏生活中的图案,并运用它们在方格纸上设计简单的图案”。三、教学目标及重难点1.使学生认识圆,学会用圆规画圆,掌握圆的基本特征。2.使学生会利用直尺和圆规,在教师指导下设计一些与圆有关的图案。3.使学生通过实践操作,理解圆周率的意义,理解和掌握圆的周长计算公式,并解决一些相应的实际问题。4.引导学生探索并掌握圆的面积计算公式,并解决一些简单的实际问题。5.使学生认识扇形,掌握扇形的一些基本特征。6.使学生经历尝试、探究、分析、反思等过程,培养数学活动经验,在解决一些与圆有关的数学问题的过程中,提高问题解决的能力。7.使学生在推导圆的周长与面积的计算公式过程中体会和掌握转化、极限等数学思想。8.通过生活实例、数学史料,感受数学之美,了解数学文化,提高学习兴趣。四、具体内容1.

圆的认识(1)圆的各部分名称、圆的性质教材首先呈现了自然界和社会生活中形形色色的“圆”,其中包括许多同心圆。丰富的圆形图案,使学生感受到圆很美,同时,感受到数学就在身边,激发起良好的学习情绪。接下来,请学生想办法在纸上画一个圆,学生可以调动以前的经验,用茶杯盖、三角尺上的圆洞等圆形物体进行描摹,也可以用圆规画圆。用实物画圆也是很有意义的动手实践机会,但画出的圆的大小是固定的,不能随意变化。而用圆规画圆却可以在两脚叉开的范围内画出任意大小的圆来。在画圆环节出现用圆规画圆,也是尊重学情的一种体现。学生在课外应该都尝试过用圆规画圆,但是如何画得标准,画得轻松,还需教师进一步指导。利用圆规画圆,引出圆的各部分名称。一方面,与前面的活动自然衔接;另一方面,画圆的过程非常切合“圆是到定点的距离等于定长的所有点的集合”这一几何学的定义。通过这一过程引出圆心、半径、直径等概念,将动手操作、观察思考、概念引出融为一体,自然流畅。对圆特征的认识,分四个层次编排:首先,让学生将画好的圆折一折、画一画、量一量,发现沿着任意一条直径对折,两边可以重合,说明了圆是轴对称图形。第二,通过对折痕的观察和想象,让学生理解半径和直径都有无数条。第三,通过测量与比较,让学生认识到同一圆内所有的半径都相等,所有的直径也都相等,并且直径的长度是半径的2倍。第四,结合画圆的经验,理解圆心可决定圆的位置,半径可决定圆的大小。(2)利用圆设计图案尺规作图是一项有着悠久历史、充满魅力的数学技能。教材在认识圆之后,安排了这样一个实践性内容,既可以让学生进一步熟练用圆规画圆的技能,促进学生对圆的特征的进一步认识,又能让学生在用尺规画出漂亮图案的过程中提高动手操作的能力,学会欣赏数学的美,培养热爱数学学习的情感。教材先以分解的步骤,展示了如何利用圆的特征,一步一步画出四个花瓣式的漂亮图案。这中间,涉及到充分利用圆的对称性,需要学生学会确定某个圆或半圆的圆心和半径,这也是圆心和半径分别确定圆的位置与大小的最直接应用。此外,还需要学生添加一些辅助线。因此,这样的活动体现了很强的综合性。之后,教材呈现了两个更复杂的图案,让学生尝试画一画,这需要学生综合运用观察、思考、动手等多方面的技能。教材给出了一些辅助线加以提示,需要学生对已经成形的图案进行“分解”,知道每一部分是怎么来的。用直尺画出基本的图形后,再进行涂色,涂不同的颜色,也会形成不同的作品。2.

圆的周长(1)圆的周长计算公式的推导圆的周长计算在实际生活中有广泛的应用,因此,教材从“要在圆桌和菜板的边缘箍上一圈铁皮,求铁皮的长度”这一学生熟悉的实际情境引入,帮助学生理解圆的周长的概念。学生已经具备了测量一般图形(物体)周长的技能,因此,面对“分别需要多长的铁皮”的问题,他们完全能想到解决的办法:拿卷尺直接绕一圈量,或者把圆形物体在直尺上滚一圈再量出长度,或者拿线在圆形物体上绕一圈,量出线的长度。学生在解决实际问题的过程中感受了方法多样性和“化曲为直”的转化思想。更重要的是,圆周长概念的内涵,就在这样的过程中得以清晰化、直观化。方法需要优化,思维需要提升。教材在此基础上提出“除了上面的方法,还可以怎样求圆的周长呢?”要求学生跳出绕、滚、围等策略的测量方法,找到一种更为一般化的方法。通过“圆的周长和圆的大小有关系,圆的大小取决于……”,启发学生将问题解决的方向放在从圆本身的特征去想办法突破。第63页上方的表格,是引导学生通过测量几组圆的直径和周长,自主发现周长和直径的比值是一个固定值,从而引出圆周率的概念,并总结出圆的周长计算公式。在这个内容中,教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系、验证猜测等过程,理解并掌握圆的周长计算方法。教材通过直接介绍的方式说明周长与直径的比值是一个固定的数,叫做圆周率,用字母“π”来表示。为了方便学生计算,教材规定“π”这个无限不循环小数常常只取它的近似数,即两位小数3.14。根据圆的周长和直径的倍数关系,可以得出求圆的周长的计算公式:C=πd或C=2πr。(2)例1本例是一个与圆的周长计算有关的实际问题。通过学生经常看到或使用的自行车引出问题,能让学生体会到数学知识的广泛应用。自行车的后轮半径是33cm,它滚一圈能走多远,那就是求它的周长。这样的问题,是“化曲为直”思想的应用——用曲的车轮周长计量自行车前进的距离。第二个问题带有更强的现实性,“小明从家到学校1km,轮子大约转了多少圈?”学生必须通过计算,才能解决这个问题。得出的相关结果,也能加强学生的生活经验。3.圆的面积(1)圆的面积计算公式的推导教材首先通过计算圆形草坪占地面积的实际情境提出圆面积的概念,一方面使学生在以前所学知识的基础上理解“圆的面积就是它所占平面的大小”,另一方面使学生体会在实际生活中计算圆面积的必要性。学生以前所学的图形都是多边形(如三角形、长方形、正方形、平行四边形、梯形等),像圆这样的曲线图形的面积计算,学生还是第一次接触到。把圆分割成若干等份后拼成近似的长方形的方法,学生很难自主发现,因此,教材直接给出明确的提示,让学生把圆分成若干等份,拼一拼。接下来的过程,则主要交给学生自主探索。教材让学生通过观察,看到拼出的是近似的长方形(或平行四边形),随着分的份数越来越多,拼出的图形越来越接近于长方形,体会“无限逼近”的极限思想。这个近似的长方形的的长和宽与圆的周长、半径有着紧密的联系。引导学生通过观察、对比,利用圆与长方形之间的关系,自行推导出圆的面积计算公式。(2)例1本例是在学生推导出了圆面积计算公式以后,用此公式解决本节开头的实际问题。求的是铺满草皮需要多少钱,这一问题比“求草皮面积是多少”更有现实意义、更自然。要求铺满草皮需要多少钱,首先要求圆形草皮的面积。(3)例2本例是求圆环的面积,教材通过插图帮助学生了解什么叫圆环,理解求圆环的面积是用外圆面积减去内圆面积。教材给出了两种算法:3.14×62-3.14×22和3.14×(62-22)。教材也有意引导学生根据乘法分配律,采用相对简便的算法,这样,可以大大减少计算的繁杂程度,减少计算出错的可能性。(4)例3本例通过让学生解决圆的内接正方形、外切正方形与圆之间部分的面积这一实际问题,经历问题解决的全过程,并在解决具体问题的基础上发现更为一般的数学规律,提高发现问题、提出问题、分析问题、解决问题的能力。例题以中国古建筑中“外方内圆”和“外圆内方”两种经典设计为情境,直观清晰地提出了需要解决的数学问题——求正方形与圆之间的那部分面积。两个图中的圆大小相同,但正方形位置与大小都不同。很自然地引出一个问题:中间部分的面积与圆的面积有没有关系?有什么样的关系?例3是给出一个特殊的圆半径,先解决特殊问题,在“反思”部分再讨论一般性的规律。“分析与解答”引导学生根据图示寻找正方形与圆之间的关系。第一个图,很容易看出正方形的边长就是圆的直径;第二个图,正方形的边长不知道,不能用边长的平方直接计算面积。此时,就需要转换思路,将正方形看成两个底是圆的直径、高是圆的半径的三角形(或四个小三角形)。在前面的解题环节,学生发现正方形与圆之间的面积与圆的半径是有关的,那到底有什么样的关系呢?因此,在“回顾与反思”这一环节,需要继续延伸讨论,进一步探讨一般化的结论。圆的半径是r与半径是1m的解题思路完全相同,因为半径1m只是其中的一种特例。让学生利用刚才的方法,得到一个代数式的结果。把r=1m代入,与前面的结果相符,以此检验这个代数式的正确性。4.

扇形的认识教材呈现了三个名称中含有“扇”的物体,引出问题:什么是扇形?这样的引入方式,把扇形这个数学名词与学生已有的生活经验建立联系,有助于激发学生的研究兴趣。教材结合图示,以直接介绍的方式,揭示了“弧”“扇形”“圆心角”等术语的含义。事实上,扇形就是弧和圆心角所组成的图形。《几何原本》中这样定义扇形:由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形叫做扇形。扇形的大小与圆心角的大小紧密相关,也与所在圆的半径大小有关。到第七单元学习扇形统计图时,还用到了各部分扇形的大小占整个圆的百分数。这些,需要学生直观感知并理解,但总体要求并不高,例如,扇形统计图中没有提出计算各扇形圆心角的明确要求。因此,教材上只列出了两类特殊的扇形:半圆为弧的扇形对应的圆心角是180°,圆为弧的扇形对应的圆心角是90°。五、教学建议

(一)以实践活动引领学生学习,加强学生动手操作、自主探索的能力

本单元教材在各知识板块的编排中,都体现了上述的理念与内容,即以实践性的活动让学生“做”起来,在“做”的过程中,引发学生的“思考”,进而主动探索,最终理解概念(或得出结论)。在实际教学中,教师应注意多让学生动手操作,通过画一画、剪一剪、围一围、拼一拼等多种形式,帮助学生认识圆的基本特征,探索圆的周长、面积计算公式。

比如在教学“圆的认识”时,教师应指导学生掌握用圆规画圆的方法,让学生在画圆的过程中,去观察和圆相关的一些元素,如针尖所在的点、两脚之间的距离,从而导出圆心、半径和直径等概念,在通过折、画、量等活动发现半径、直径的特点及关系。探究圆的周长时,则可让学生采用围一围、滚一滚的方法先测量出周长,在此基础上引导学生探究周长与直径之间的关系。探索圆的面积时,可指导学生将把圆分成若干等份的小纸片拼一拼,从而“化圆为方”,再通过观察、对比、推理,得出圆的面积计算公式。

当然,在实际教学时,我们不能把学生的动手操作活动作为活动的目的,而应该引导学生以动手操作为基础,探索和发现圆的有关特性。如此,学生不仅掌握了知识和技能,体验到了操作活动的价值,还有效地积累了数学活动的经验。

(二)在探求知识的同时,引导学生体会和掌握有关的数学思想方法本单元涉及“化曲为直”“转化”“推理”“极限”等多种数学思想方法。因此,教学时应将此作为一个重要的教学目标予以落实。圆的周长和面积计算公式的推导,用到了转化的思想,需要引导学生深入体会这种思想方法。如在研究圆的面积计算公式时,教师可让学生回顾:以前研究多边形面积时,主要采用了割补法、拼组等方法,将多边形转化为学生更熟悉的图形来解决,那么是否也可以按这样的思路,利用割补等方式把圆转化为熟

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论