上海市曹扬第二中学2024届高二数学第一学期期末综合测试试题含解析_第1页
上海市曹扬第二中学2024届高二数学第一学期期末综合测试试题含解析_第2页
上海市曹扬第二中学2024届高二数学第一学期期末综合测试试题含解析_第3页
上海市曹扬第二中学2024届高二数学第一学期期末综合测试试题含解析_第4页
上海市曹扬第二中学2024届高二数学第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市曹扬第二中学2024届高二数学第一学期期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,空间四边形OABC中,,,,点M在上,且,点N为BC中点,则()A. B.C. D.2.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待18秒才出现绿灯的概率为()A B.C. D.3.若椭圆的一个焦点为,则的值为()A.5 B.3C.4 D.24.已知集合,,则A. B.C. D.5.已知直线过点,,则直线的方程为()A. B.C. D.6.在正方体中,E,F分别为AB,CD的中点,则与平面所成的角的正弦值为()A. B.C. D.7.记Sn为等差数列{an}的前n项和,给出下列4个条件:①a1=1;②a4=4;③S3=9;④S5=25,若只有一个条件不成立,则该条件为()A.① B.②C.③ D.④8.已知等比数列的公比q为整数,且,,则()A.2 B.3C.-2 D.-39.抛物线的焦点为,准线为,焦点在准线上的射影为点,过任作一条直线交抛物线于两点,则为()A.锐角 B.直角C.钝角 D.锐角或直角10.甲、乙、丙、丁共4名同学进行党史知识比赛,决出第1名到第4名的名次(名次无重复),其中前2名将获得参加市级比赛的资格,甲和乙去询问成绩,回答者对甲说:“很遗憾,你没有获得参加市级比赛的资格.”对乙说:“你当然不会是最差的.”从这两个回答分析,4人的排名有()种不同情况.A.6 B.8C.10 D.1211.直线与圆相交于点,点是坐标原点,若是正三角形,则实数的值为A.1 B.-1C. D.12.“x>1”是“x>0”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.设正方形的边长是,在该正方形区域内随机取一个点,则此点到点的距离大于的概率是_____14.等差数列前项之和为,若,则________15.已知,用割线逼近切线的方法可以求得___________.16.已知函数在处有极值2,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论函数的单调性;(2)若恒成立,求实数的取值范围.18.(12分)如图,直四棱柱的底面是菱形,,,直线与平面ABCD所成角的正弦值为.E,F分别为、的中点.(1)求证:平面BED;(2)求直线与平面FAC所成角的正弦值.19.(12分)已知椭圆的右焦点是椭圆上的一动点,且的最小值是1,当垂直长轴时,.(1)求椭圆的标准方程;(2)设直线与椭圆相切,且交圆于两点,求面积的最大值,并求此时直线方程.20.(12分)已知椭圆C的中心在原点,焦点在x轴上,焦距为2,离心率为(1)求椭圆C的方程;(2)设直线l经过点M(0,1),且与椭圆C交于A,B两点,若,求直线l的方程21.(12分)已知椭圆的左、右焦点分别是,,离心率为,过且垂直于x轴的直线被椭圆C截得的线段长为1(1)求椭圆C方程;(2)设点P在直线上,过点P的两条直线分别交曲线C于A,B两点和M,N两点,且,求直线AB的斜率与直线MN的斜率之和22.(10分)男子10米气步枪比赛规则如下:在资格赛中,射手在距离靶子10米处,采用立姿,在105分钟内射击60发子弹,总环数排名前8名的射手进入决赛;在决赛中,每位射手仅射击10发子弹.已知甲乙两名运动员均进入了决赛,资格赛中的环数情况整理得下表:环数频数678910甲2352327乙5502525以各人这60发子弹环数的频率作为决赛中各发子弹环数发生的概率,甲乙两人射击互不影响(1)求甲运动员在决赛中前2发子弹共打出1次10环的概率;(2)决赛打完第9发子弹后,甲比乙落后2环,求最终甲能战胜乙(甲环数大于乙环数)的概率

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用空间向量运算求得正确答案.【详解】.故选:B2、B【解析】由几何概型公式求解即可.【详解】红灯持续时间为40秒,则至少需要等待18秒才出现绿灯的概率为,故选:B3、B【解析】由题意判断椭圆焦点在轴上,则,解方程即可确定的值.【详解】有题意知:焦点在轴上,则,从而,解得:.故选:B.4、B【解析】由交集定义直接求解即可.【详解】集合,,则.故选B.【点睛】本题主要考查了集合的交集运算,属于基础题.5、C【解析】根据两点的坐标和直线的两点式方程计算化简即可.【详解】由直线的两点式方程可得,直线l的方程为,即故选:C6、B【解析】作出线面角构造三角形直接求解,建立空间直角坐标系用向量法求解.【详解】设正方体棱长为2,、F分别为AB、CD的中点,由正方体性质知平面,所以平面平面,在平面作,则平面,因为,所以即为所求角,所以.故选:B7、B【解析】根据等差数列通项公式及求和公式的基本量计算,对比即可得出结果.【详解】设等差数列{an}的公差为,,,,即,即.当,时,①③④均成立,②不成立.故选:B8、A【解析】由等比数列的性质有,结合已知求出基本量,再由即可得答案.【详解】因为,,且q为整数,所以,,即q=2.所以.故选:A9、D【解析】设出直线方程,联立抛物线方程,利用韦达定理,求得,根据其结果即可判断和选择.【详解】为说明问题,不妨设抛物线方程,则,直线斜率显然不为零,故可设直线方程为,联立,可得,设坐标为,则,故,当时,,;当时,,;故为锐角或直角.故选:D.10、C【解析】由题可知甲不在前2名,乙不在最后一名,然后分类讨论可得答案.【详解】若甲是最后一名,则其他三人没有限制,4人排名即为,若甲是第三名,4人的排名为,所以4人的排名有种情况.故选:C11、C【解析】由题意得,直线被圆截得的弦长等于半径.圆的圆心坐标,设圆半径为,圆心到直线的距离为,则由条件得,整理得所以,解得.选C12、A【解析】根据充分、必要条件间的推出关系,判断“x>1”与“x>0”的关系.【详解】“x>1”,则“x>0”,反之不成立.∴“x>1”是“x>0”的充分不必要条件.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求出正方形的面积,然后求出动点到点的距离所表示的平面区域的面积,最后根据几何概型计算公式求出概率.【详解】正方形的面积为,如下图所示:阴影部分的面积为:,在正方形内,阴影外面部分的面积为,则在该正方形区域内随机取一个点,则此点到点的距离大于的概率是.【点睛】本题考查了几何概型的计算公式,正确求出阴影部分的面积是解题的关键.14、【解析】直接利用等差数列前项和公式和等差数列的性质求解即可.【详解】由已知条件得,故答案为:.15、【解析】根据导数的定义直接计算即可【详解】因为,所以,故答案为:16、6【解析】根据函数在处有极值2,可得,解方程组即可得解.【详解】解:,因为函数在处有极值2,所以,即,解得,则,故当时,,当时,,所以函数在处有极大值,所以,所以.故答案为:6.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)当时,上单调递增;当时,在上单调递减,在上单调递增;当时,在上单调递减,在上单调递增.(2)【解析】(1)先求函数的定义域,再求导,根据导数即可求出函数的单调区间;(2)根据(1)的结论,分别求时的最小值,令,即可求出实数的取值范围.【小问1详解】易知函数的定义域为,,当时,,所以在上单调递增;当时,,令,得;令,得,所以在上单调递减,在上单调递增;当时,,令,得;令,得,所以在上单调递减,在上单调递增.【小问2详解】当时,成立,所以符合题意;当时,在上单调递减,在上单调递增,要使恒成立,则,解得;当时,在上单调递减,在上单调递增,要使恒成立,则,解得.综上所述,实数的取值范围是.18、(1)证明见解析(2)【解析】(1)证明垂直于平面BED内的两条相交直线,即可得到答案;(2)分别以OB,OC,OE为x轴,y轴,z轴,建立直角坐标系,平面FAC的一个法向量为,代入向量的夹角公式,即可得到答案;【小问1详解】∵ABCD为菱形,∴,设AC与BD的交点为O,则OE为的中位线,∴.由题意得平面ABCD,∴平面ABCD,而AC平面ABCD中,∴.又,∴平面BED.小问2详解】∵ABCD为菱形,,∴为正三角形,∴.∵平面ABCD,∴与平面ABCD所成角,由,得,所以.如图,分别以OB,OC,OE为x轴,y轴,z轴,建立直角坐标系,则,,,,,,,设平面FAC的法向量为,则由可得,取,故可得平面FAC的一个法向量为,记直线与平面FAC的夹角为,则19、(1);(2),.【解析】(1)由的最小值为1,得到,再由,结合,求得的值,即可求得椭圆的方程.(2)设切线的方程为,联立方程组,根据直线与椭圆相切,求得,结合点到直线的距离公式和圆的弦长公式,求得的面积的表示,结合函数的单调性,即可求解.【详解】(1)由题意,点椭圆上的一动点,且的最小值是1,得,因为当垂直长轴时,可得,所以,即,又由,解得,所以椭圆的标准方程为.(2)由题意知切线的斜率一定存在,否则不能形成,设切线的方程为,联立,整理得,因为直线与椭圆相切,所以,化简得,则,因为点到直线的距离,所以,即,故的面积为,因为,可得,即,函数在上单调递增,所以,当时取等号,则,即面积的最大值为.当时,此时,所以直线的方程为.【点睛】对于直线与椭圆的位置关系的处理方法:1、判定与应用直线与椭圆的位置关系,一把转化为研究直线方程与椭圆组成的方程组的解得个数,结合判别式求解;2、对于过定点的直线,也可以通过定点在椭圆的内部或在椭圆上,判定直线与椭圆的位置关系.20、(1);(2)或【解析】(1)根据椭圆的焦距为2,离心率为,求出,,即可求椭圆的方程;(2)设直线方程为,代入椭圆方程,由得,利用韦达定理,化简可得,求出,即可求直线的方程.试题解析:(1)设椭圆方程为,因为,所以,所求椭圆方程为.(2)由题得直线l的斜率存在,设直线l方程为y=kx+1,则由得,且.设,则由得,又,所以消去得,解得,,所以直线的方程为,即或.21、(1)(2)0【解析】(1)由条件得和,再结合可求解;(2)设直线AB的方程为:,与椭圆联立,得到,同理得,再根据题中的条件化简整理可求解.【小问1详解】因为椭圆的离心率为,所以,所以①又因为过且垂直于x轴的直线被椭圆C截得的线段长为1,所以②,由①②可知,所以,,所以椭圆C的方程为【小问2详解】因为点P在直线上,所以设点,由题可知,直线AB的斜率与直线MN的斜率都存在所以直线AB的方程为:,即,直线MN的方程为:,即,设,,,,所以,消去y可得,,整理可得,且所以,,又因为,,所以,同理可得,又因为,所以,又因为,,,都是长度,所以,所以,整理可得,又因为,所以,所以直线AB的斜率与直线MN的斜率之和为022、(1)(2)【解析】(1)先求出甲运动员打中10环的概率,从而可求出甲运动员在决赛中前2发子弹共打出1次1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论