版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安市碑林区教育局2024届数学高二上期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列的通项公式为,则()A.12 B.14C.16 D.182.若存在过点(0,-2)的直线与曲线和曲线都相切,则实数a的值是()A.2 B.1C.0 D.-23.若倾斜角为的直线过两点,则实数()A. B.C. D.4.已知,是球的球面上两点,,为该球面上的动点,若三棱锥体积的最大值为36,则球的表面积为()A. B.C. D.5.已知,则a,b,c的大小关系为()A. B.C. D.6.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤”意思是:“现有一根金杖,长5尺,头部1尺,重4斤;尾部1尺,重2斤;若该金杖从头到尾每一尺重量构成等差数列,其中重量为,则的值为()A.4 B.12C.15 D.187.已知,,,,则下列不等关系正确的是()A. B.C. D.8.等比数列的前项和为,前项积为,,当最小时,的值为()A.3 B.4C.5 D.69.从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点;从双曲线的一个焦点发出的光线,经过双曲线反射后,反射光线的反向延长线经过双曲线的另一个焦点.如图①,一个光学装置由有公共焦点的椭圆与双曲线构成,现一光线从左焦点发出,依次经与反射,又回到了点,历时秒;若将装置中的去掉,如图②,此光线从点发出,经两次反射后又回到了点,历时秒;若,则的长轴长与的实轴长之比为()A. B.C. D.10.已知对称轴为坐标轴的双曲线的两渐近线方程为,若双曲线上有一点,使,则双曲线的焦点()A.在轴上 B.在轴上C.当时在轴上 D.当时在轴上11.已知直线与直线平行,且直线在轴上的截距比在轴上的截距大,则直线的方程为()A. B.C. D.12.从0,1,2,3,4,5这六个数字中,任取两个不同数字构成平面直角坐标系内点的横、纵坐标,其中不在轴上的点有()A.36个 B.30个C.25个 D.20个二、填空题:本题共4小题,每小题5分,共20分。13.已知定义在上的偶函数的导函数为,当时,有,且,则使得成立的的取值范围是___________.14.若,则数列的前21项和___________.15.已知直线与之间的距离为,则__________16.数列满足,,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)求函数在点处的切线方程;(2)求函数的单调区间及极值18.(12分)已知是等差数列的前n项和,且,(1)求数列的通项公式;(2)令,求数列的前n项和19.(12分)已知椭圆:过点,且离心率(Ⅰ)求椭圆的标准方程;(Ⅱ)设的左、右焦点分别为,,过点作直线与椭圆交于,两点,,求的面积20.(12分)如图,四棱锥中,,.(1)证明:平面;(2)在线段上是否存在一点,使直线与平面所成角的正弦值等于?21.(12分)在△ABC中,角A,B,C的对边分别是a,b,c已知c•cosB+(b-2a)cosC=0(1)求角C的大小(2)若c=2,a+b=ab,求△ABC的面积22.(10分)已知E,F分别是正方体的棱BC和CD的中点(1)求与所成角的大小;(2)求与平面所成角的余弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用给定的通项公式直接计算即得.【详解】因数列的通项公式为,则有,所以.故选:D2、A【解析】在两曲线上设切点,得到切线,又因为(0,-2)在两条切线上,列方程即可.【详解】的导函数为,的导函数为,若直线与和的切点分别为(,),,∴过(0,-2)的直线为、,则有,可得故选:A.3、A【解析】解方程即得解.【详解】解:由题得.故选:A4、C【解析】当平面时,三棱锥体积最大,根据棱长与球半径关系即可求出球半径,从而求出表面积.【详解】当平面时,三棱锥体积最大.又,则三棱锥体积,解得;故表面积.故选:C.【点睛】关键点点睛:本题考查三棱锥与球的组合体的综合问题,本题的关键是判断当平面时,三棱锥体积最大.5、A【解析】根据给定条件构造函数,再探讨其单调性并借助单调性判断作答.【详解】令函数,求导得,当时,,于是得在上单调递减,而,则,即,所以,故选:A6、C【解析】先求出公差,再利用公式可求总重量.【详解】设头部一尺重量为,其后每尺重量依次为,由题设有,,故公差为.故中间一尺的重量为所以这5项和为.故选:C.7、C【解析】不等式性质相关的题型,可以通过举反例的方式判断正误.【详解】若、均为负数,因为,则,故A错.若、,则,故B错.由不等式的性质可知,因为,所以,故C对.若,因为,所以,故D错.故选:C.8、B【解析】根据等比数列相关计算得到,,进而求出与,代入后得到,利用指数函数和二次函数单调性得到当时,取得最小值.【详解】显然,由题意得:,,两式相除得:,将代入,解得:,所以,所以,,所以,其中单调递增,所以当时,取得最小值.故选:B9、D【解析】在图①和图②中,利用椭圆和双曲线的定义,分别求得和的周长,再根据光速相同,且求解.【详解】在图①中,由椭圆的定义得:,由双曲线的定义得,两式相减得,所以的周长为,在图②中,的周长为,因为光速相同,且,所以,即,所以,即的长轴长与的实轴长之比为,故选:D10、B【解析】设出双曲线的一般方程,利用题设不等式,令二者平方,整理求得的,进而可判断出焦点的位置【详解】渐近线方程为,,平方,两边除,,,双曲线的焦点在轴上.故选B.【点睛】本题考查已知双曲线的渐近线方程求双曲线的方程,考查对双曲线标准方程的理解与运用,求解时要注意焦点落在轴或轴的特点,考查学生分析问题和解决问题的能力11、A【解析】分析可知直线不过原点,可设直线的方程为,其中且,利用斜率关系可求得实数的值,化简可得直线的方程.【详解】若直线过原点,则直线在两坐标轴上的截距相等,不合乎题意,设直线的方程为,其中且,则直线的斜率为,解得,所以,直线的方程为,即.故选:A.12、C【解析】根据点不在y轴上,分2类根据分类加法计数原理求解.【详解】因为点不在轴上,所以点的横坐标不能为0,分两类考虑,第一类含0且为点的纵坐标,共有个点,第二类坐标不含0的点,共有个点,根据分类加法计数原理可得共有个点.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据当时,有,令,得到在上递增,再根据在上的偶函数,得到在上是奇函数,则在上递增,然后由,得到求解【详解】∵当时,有,令,∴,∴在上递增,又∵在上的偶函数∴,∴在上是奇函数∴在上递增,又∵,∴当时,,此时,0<x<1,当时,,此时,,∴成立的的取值范围是故答案为:﹒14、【解析】利用分组求和法求出答案即可.【详解】故答案为:15、或##或【解析】利用平行直线间距离公式构造方程求解即可.【详解】方程可化为:,由平行直线间距离公式得:,解得:或.故答案为:或.16、【解析】根据递推关系依次求得的值.【详解】依题意数列满足,,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)+1;(2)单调增区间,单调减区间是和,极大值为,极小值为【解析】(1)根据导数的几何意义可求出切线斜率,求出后利用点斜式即可得解;(2)求出函数导数后,解一元二次不等式分别求出、时的取值范围即可得解.【详解】(1)因为,所以,∴切线方程为,即+1;(2),所以当或时,,当时,,所以函数单调增区间是,单调减区间是和,极大值为,极小值为18、(1)(2)【解析】(1)设等差数列的首项、公差,由列出关于首项、公差的方程组,解方程组可得与的值,从而可得数列的通项公式;(2)由(1)可知,利用裂项相消法可求数列的前n项和.小问1详解】依题意:设等差数列的首项为,公差为,则解得所以数列的通项公式为【小问2详解】由(1)可知因为,所以,所以.19、(Ⅰ);(Ⅱ).【解析】(Ⅰ)根据已知点,离心率以及列方程组,解方程组可得的值即可求解;(Ⅱ)设,,直线的方程为,联立直线与椭圆方程消去,可得,,利用向量数量积的坐标表示列方程可得的值,计算,利用面积公式计算即可求解.【详解】(Ⅰ)将代入椭圆方程可得,即①因为离心率,即,②由①②解得,,故椭圆的标准方程为(Ⅱ)由题意可得,,设直线的方程为将直线的方程代入中,得,设,,则,所以,,所以,由,解得,所以,,因此20、(1)详解解析;(2)存在.【解析】(1)利用勾股定理证得,结合线面垂直的判定定理即可证得结论;(2)以A为原点建立空间直角坐标系,设点,,求得平面的法向量,利用已知条件建立关于的方程,进而得解.【小问1详解】取中点为,连接,在中,,,,又,,所以,又,,而,所以,又,,,又,,平面.【小问2详解】以A为坐标原点,以为x轴,为y轴,为z轴建立空间直角坐标系,则,,,,设点,因为点F在线段上,设,,,设平面的法向量为,,,则,令,则,设直线CF与平面所成角为,,解得或(舍去),,此时点F是的三等分点,所以在线段上是存在一点,使直线与平面所成角的正弦值等于.21、(1);(2).【解析】(1)由题意首先利用正弦定理边化角,据此求得,则角C的大小是;(2)由题意结合余弦定理可得,然后利用面积公式可求得△ABC的面积为.试题解析:(1)∵c•cosB+(b-2a)cosC=0,由正弦定理化简可得:sinCcosB+sinBcosC-2sinAcosC=0,即sinA=2sinAcosC,∵0<A<π,∴sinA≠0.∴cosC=.∵0<C<π,∴C=.(2)由(1)可知:C=.∵c=2,a+b=ab,即a2b2=a2+b2+2ab.由余弦定理cosC==,∴ab=(ab)2-2ab-c2.可得:ab=4.那么:△ABC的面积S=absinC=.22、(1)60°;(2).【解析】(1)建立空间直角坐标系,利用空间向量夹角的坐标公式即可求出异面直线所成角的余弦值,进而
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国室内门行业发展现状及前景趋势分析报告
- 2024-2030年中国地波那非酮项目可行性研究报告
- 2024-2030年中国双耳环行业发展状况规划分析报告
- 眉山职业技术学院《系统仿真技术》2023-2024学年第一学期期末试卷
- 2024年版风力发电项目施工合同详细条款
- 马鞍山职业技术学院《纳米科学技术导论》2023-2024学年第一学期期末试卷
- 吕梁学院《药物化学(I)》2023-2024学年第一学期期末试卷
- 2024年建筑行业工程承包协议更新版版B版
- 2021-2022学年云南省文山壮族苗族自治州高一上学期期中语文试题
- 洛阳商业职业学院《小学数学教学设计与技能训练》2023-2024学年第一学期期末试卷
- 2022年度尾矿库安全风险辨识及分级管控表
- 职业学院食品药品监督管理专业核心课《企业管理》课程标准
- 投标项目进度计划
- 关于发展乡村产业的建议
- 登泰山记-教学课件
- 2024版水电费缴费协议范本
- 北师大版四年级数学上册第五单元《方向与位置》(大单元教学设计)
- 2024年西安交大少年班选拔考试语文试卷试题(含答案详解)
- 2024年云南省昆明滇中新区公开招聘20人历年重点基础提升难、易点模拟试题(共500题)附带答案详解
- 2024年国开思政课《马克思主义基本原理》大作业、形考及学习行为表现试题及答案请理论联系实际谈一谈你对实践的理解
- 2024届浙江高考英语写作分类训练:建议信(含答案)
评论
0/150
提交评论