版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省恒口高级中学2023年数学高二上期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知满约束条件,则的最大值为()A.0 B.1C.2 D.32.如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是()A.圆 B.双曲线C.抛物线 D.椭圆3.观察:则第行的值为()A. B.C. D.4.已知双曲线离心率为2,过点的直线与双曲线C交于A,B两点,且点P恰好是弦的中点,则直线的方程为()A. B.C. D.5.对任意实数,在以下命题中,正确的个数有()①若,则;②若,则;③若,则;④若,则A. B.C. D.6.若,(),则,的大小关系是A. B.C. D.,的大小由的取值确定7.已知圆:,是直线的一点,过点作圆的切线,切点为,,则的最小值为()A. B.C. D.8.已知点,是椭圆:的左、右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,且,则的离心率为()A. B.C. D.9.《米老鼠和唐老鸭》这部动画给我们的童年带来了许多美好的回忆,令我们印象深刻.如图所示,有人用3个圆构成米奇的简笔画形象.已知3个圆方程分别为:圆圆,圆若过原点的直线与圆、均相切,则截圆所得的弦长为()A B.C. D.10.已知抛物线,过点作抛物线的两条切线,点为切点.若的面积不大于,则的取值范围是()A. B.C. D.11.若,则下列不等式①;②;③;④中,正确的不等式有()A.0个 B.1个C.2个 D.3个12.椭圆的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若过点和的直线与直线平行,则_______14.已知数列中,,,则_______.15.已知命题:方程表示焦点在轴上的椭圆;命题:方程表示双曲线.若为真,则实数的取值范围为______.16.已知数列前项和为,且,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若函数的图象在处的切线方程为,求的值;(2)若函数在上是增函数,求实数的最大值.18.(12分)已知函数.(1)求曲线在处的切线方程;(2)求曲线过点的切线方程.19.(12分)已知等差数列的前项和为,,.(1)求的通项公式;(2)设数列的前项和为,用符号表示不超过x的最大数,当时,求的值.20.(12分)已知椭圆:经过点,设右焦点F,椭圆上存在点Q,使QF垂直于x轴且.(1)求椭圆的方程;(2)过点的直线与椭圆交于D,G两点.是否存在直线使得以DG为直径的圆过点E(-1,0)?若存在,求出直线的方程,若不存在,说明理由.21.(12分)已知数列中,,.(1)求证:数列是等差数列,并求数列的通项公式;(2)求数列的前项和.22.(10分)已知圆心C的坐标为,且是圆C上一点(1)求圆C的标准方程;(2)过点的直线l被圆C所截得的弦长为,求直线l的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】作出给定不等式表示的平面区域,再借助几何意义即可求出的最大值.【详解】画出不等式组表示的平面区域,如图中阴影,其中,,目标函数,即表示斜率为2,纵截距为的平行直线系,作出直线,平移直线到直线,使其过点A时,的纵截距最小,最大,则,所以的最大值为1.故选:B2、D【解析】根据题意知,所以,故点P的轨迹是椭圆.【详解】由题意知,关于CD对称,所以,故,可知点P的轨迹是椭圆.【点睛】本题主要考查了椭圆的定义,属于中档题.3、B【解析】根据数阵可知第行为,利用等差数列求和,即可得到答案;【详解】根据数阵可知第行为,,故选:B4、C【解析】运用点差法即可求解【详解】由已知得,又,,可得.则双曲线C的方程为.设,,则两式相减得,即.又因为点P恰好是弦的中点,所以,,所以直线的斜率为,所以直线的方程为,即.经检验满足题意故选:C5、B【解析】直接利用不等式的基本性质判断.【详解】①因为,则,根据不等式性质得,故正确;②当时,,而,故错误;③因为,所以,即,故正确;④当时,,故错误;故选:B6、A【解析】∵且,∴,又,∴,故选A.7、A【解析】根据题意,为四边形的面积的2倍,即,然后利用切线长定理,将问题转化为圆心到直线的距离求解.【详解】圆:的圆心为,半径,设四边形的面积为,由题设及圆的切线性质得,,∵,∴,圆心到直线的距离为,∴的最小值为,则的最小值为,故选:A8、D【解析】设,先求出点,得,化简即得解【详解】由题意可知椭圆的焦点在轴上,如图所示,设,则,∵为等腰三角形,且,∴.过作垂直轴于点,则,∴,,即点.∵点在过点且斜率为的直线上,∴,解得,∴.故选:D【点睛】方法点睛:求椭圆的离心率常用的方法有:(1)公式法(求出椭圆的代入离心率的公式即得解);(2)方程法(通过已知找到关于离心率的方程解方程即得解).9、A【解析】设直线,利用直线与圆相切,求得斜率,再利用弦长公式求弦长【详解】设过点的直线.由直线与圆、圆均相切,得解得(1).设点到直线的距离为则(2).又圆的半径直线截圆所得弦长结合(1)(2)两式,解得10、C【解析】由题意,设,直线方程为,则由点到直线的距离公式求出点到直线的距离,再联立直线与抛物线方程,由韦达定理及弦长公式求出,进而可得,结合即可得答案.【详解】解:因为抛物线的性质:在抛物线上任意一点处的切线方程为,设,所以在点处的切线方程为,在点B处的切线方程为,因为两条切线都经过点,所以,,所以直线的方程为,即,点到直线的距离为,联立直线与抛物线方程有,消去得,由得,,由韦达定理得,所以弦长,所以,整理得,即,解得,又所以.故选:C.11、C【解析】由条件,可得,利用不等式的性质和基本不等式可判断①、②、③、④中不等式的正误,得出答案.【详解】因为,所以.因此,且,且②、③不正确.所以,所以①正确,由得、均为正数,所以,(由条件,所以等号不成立),所以④正确.故选:C.12、A【解析】由椭圆标准方程求得,再计算出后可得离心率【详解】在椭圆中,,,,因此,该椭圆的离心率为.故选:A.【点睛】本题考查求椭圆的离心率,根据椭圆标准方程求出即可二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据两直线的位置关系求解.【详解】因为过点和的直线与直线平行,所以,解得,故答案为:314、【解析】根据递推公式一一计算即可;【详解】解:因为,所以,,,故答案为:15、【解析】既然为真,那么就是为真,即p是假,并且q是真,根据椭圆和双曲线的定义即可解出。【详解】∵为真,∴p为假,q为真;考虑p为真的情况:解得……①;由于p为假,∴或;由于q为真,∴,即……②;由①和②得:;故答案为:.16、,.【解析】由的递推关系,讨论、求及,注意验证是否满足通项,即可写出的通项公式.【详解】当时,,当且时,,而,即也满足,∴,.故答案为:,.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)先对函数求导,再根据在处的切线斜率可得到参数的值,然后代入,求出的值,则即可得出;(2)根据函数在上是增函数,可得,即恒成立,再进行参变分离,构造函数,对进行求导分析,找出最小值,即实数的最大值【详解】解:(1)由题意,函数.故,则,由题意,知,即.又,则.,即..(2)由题意,可知,即恒成立,恒成立.设,则.令,解得.令,解得.令,解得x.在上单调递减,在上单调递增,在处取得极小值..,故的最大值为.【点睛】本题主要考查利用某点处的一阶导数分析得出参数的值,参变量分离方法的应用,不等式的计算能力.本题属中档题18、(1);(2).【解析】(1)首先求导函数,计算,接着根据导数的几何意义确定切线的斜率,最后根据点斜式写出直线方程即可;(2)因为点不在曲线上,所以设切点为,根据导数的几何意义写出切线的方程,代入点求解,最后写出切线方程即可.【详解】(1).,.所以曲线在处的切线方程为,即(2)设切点为,则曲线在点处的切线方程为,代入点得,,.所以曲线过点的切线方程为,即.19、(1)(2)9【解析】(1)首先根据已知条件分别求出的首项和公差,然后利用等差数列的通项公式求解即可;(2)首先利用等差数列求和公式求出,然后利用裂项相消法和分组求和法求出,进而可求出的通项公式,最后利用等差数列求和公式求解即可.【小问1详解】不妨设等差数列的公差为,故,,解得,,从而,即的通项公式为.【小问2详解】由题意可知,,所以,故,因为当时,;当时,,所以,由可知,,即,解得,即值为9.20、(1);(2)存在,或.【解析】(1)根据题意,列出的方程组,求得,则椭圆方程得解;(2)对直线的斜率进行讨论,当斜率存在时,设出直线方程,联立椭圆方程,利用韦达定理,转化题意为,求解即可.小问1详解】由题意,得,设,将代入椭圆方程,得,所以,解得,所以椭圆的方程为.【小问2详解】当斜率不存在时,即时,,为椭圆短轴两端点,则以为直径的圆为,恒过点,满足题意;当斜率存在时,设,,,由得:,,解得:,,若以为直径的圆过点,则,即,又,,,解得:,满足,即,此时直线的方程为综上,存在直线使得以为直径的圆过点,的方程为或21、(1)证明见解析,(2)【解析】(1)由,取倒数得到,再利用等差数列的定义求解;(2)由(1)得到,利用错位相减法求解.【小问1详解】证明:由,以及,显然,所以,即,所以数列是首项为,公差为的等差数列,所以,所以;【小问2详解】由(1)可得,,所以数列的前项
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 煤矿机电设备管理系统技术方案
- 绩效发展咨询服务
- 展会服务合同范本在线看
- 拼花地板购销合同样本
- 个人工作承诺
- 社区安宁餐饮业静音承诺
- 马戏团表演安全保障服务协议
- 终止协议合同的操作
- 版评审表采购合同
- 机电工程招标文件解读与指导
- 产品合格证标签出厂合格证模板
- GA/T 2007-2022法庭科学气枪弹检验技术规范
- 春节人员流失预控方案
- 《孔乙己》改编剧本
- 化工自动化控制仪表作业安全操作资格培训教材课件
- 绘画心理治疗专家讲座
- 合同Amazon店铺代运营协议模板
- 小学少先队活动课赣教三年级上册主题一唱响嘹亮的队歌勇敢前进
- 拉丁字母字体造型规律课件
- 《穿井得一人》《桑中生李》阅读练习及答案
- 五年级下册第三单元百年追梦复兴中华《不甘屈辱奋勇抗争-虎门销烟》教案
评论
0/150
提交评论