文科一轮学学案5.1向量的线性运算_第1页
文科一轮学学案5.1向量的线性运算_第2页
文科一轮学学案5.1向量的线性运算_第3页
文科一轮学学案5.1向量的线性运算_第4页
文科一轮学学案5.1向量的线性运算_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第五章平面向量第二章函数与基本初等函数4-5-第五章平面向量1-学案5.1向量的线性运算自主预习案自主复习夯实基础【双基梳理】1.向量的有关概念名称定义备注向量具有和的量;向量的大小叫做向量的(或称)平面向量是自由向量零向量长度为的向量;其方向记作0单位向量长度等于的向量非零向量a的单位向量为±eq\f(a,|a|)平行向量(共线向量)共线向量的方向或0与任意向量或共线相等向量、都相同的向量两向量只有相等或不等,不能比较大小相反向量长度且方向的向量0的相反向量为02.向量的线性运算向量运算定义法则(或几何意义)运算律向量的加法求两个向量和的运算(1)交换律:a+b=b+a.(2)结合律:(a+b)+c=a+(b+c).向量的减法求a与b的相反向量-b的和的运算叫做a与b的差法则a-b=a+(-b)数乘向量求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向;当λ=0或a=0时,λa=0(1)(λ+μ)a=λa+μa;(2)λ(μa)=(λμ)a;(3)λ(a+b)=λa+λb3.平行向量基本定理如果a=λb,则a∥b;反之,如果a∥b,且b≠0,则一定存在实数λ,使a=λb.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)向量与有向线段是一样的,因此可以用有向线段来表示向量.()(2)|a|与|b|是否相等与a,b的方向无关.()(3)若a∥b,b∥c,则a∥c.()(4)向量eq\o(AB,\s\up6(→))与向量eq\o(CD,\s\up6(→))是共线向量,则A,B,C,D四点在一条直线上.()(5)当两个非零向量a,b共线时,一定有b=λa,反之成立.()(6)△ABC中,D是BC中点,则eq\o(AD,\s\up6(→))=eq\f(1,2)(eq\o(AC,\s\up6(→))+eq\o(AB,\s\up6(→))).()考点探究案典例剖析考点突破考点一平面向量的概念例1下列命题中,正确的是________.(填序号)①有向线段就是向量,向量就是有向线段;②向量a与向量b平行,则a与b的方向相同或相反;③向量eq\o(AB,\s\up6(→))与向量eq\o(CD,\s\up6(→))共线,则A、B、C、D四点共线;④两个向量不能比较大小,但它们的模能比较大小.变式训练:设a0为单位向量,①若a为平面内的某个向量,则a=|a|a0;②若a与a0平行,则a=|a|a0;③若a与a0平行且|a|=1,则a=a0.上述命题中,假命题的个数是()A.0 B.1C.2 D.3考点二平面向量的线性运算命题点1向量的线性运算例2(1)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则eq\o(EB,\s\up6(→))+eq\o(FC,\s\up6(→))等于()A.eq\o(BC,\s\up6(→)) B.eq\f(1,2)eq\o(AD,\s\up6(→))C.eq\o(AD,\s\up6(→)) D.eq\f(1,2)eq\o(BC,\s\up6(→))(2)在△ABC中,eq\o(AB,\s\up6(→))=c,eq\o(AC,\s\up6(→))=b,若点D满足eq\o(BD,\s\up6(→))=2eq\o(DC,\s\up6(→)),则eq\o(AD,\s\up6(→))等于()A.eq\f(2,3)b+eq\f(1,3)c B.eq\f(5,3)c-eq\f(2,3)bC.eq\f(2,3)b-eq\f(1,3)c D.eq\f(1,3)b+eq\f(2,3)c命题点2根据向量线性运算求参数例3(1)在△ABC中,已知D是AB边上的一点,若eq\o(AD,\s\up6(→))=2eq\o(DB,\s\up6(→)),eq\o(CD,\s\up6(→))=eq\f(1,3)eq\o(CA,\s\up6(→))+λeq\o(CB,\s\up6(→)),则λ等于()A.eq\f(2,3) B.eq\f(1,3)C.-eq\f(1,3) D.-eq\f(2,3)(2)在△ABC中,点D在线段BC的延长线上,且eq\o(BC,\s\up6(→))=3eq\o(CD,\s\up6(→)),点O在线段CD上(与点C,D不重合),若eq\o(AO,\s\up6(→))=xeq\o(AB,\s\up6(→))+(1-x)eq\o(AC,\s\up6(→)),则x的取值范围是()A.eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,2))) B.eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,3)))C.eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2),0)) D.eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,3),0))变式训练:如图,一直线EF与平行四边形ABCD的两边AB,AD分别交于E,F两点,且交对角线AC于K,其中,eq\o(AE,\s\up6(→))=eq\f(2,5)eq\o(AB,\s\up6(→)),eq\o(AF,\s\up6(→))=eq\f(1,2)eq\o(AD,\s\up6(→)),eq\o(AK,\s\up6(→))=λeq\o(AC,\s\up6(→)),则λ的值为()A.eq\f(2,9) B.eq\f(2,7)C.eq\f(2,5) D.eq\f(2,3)考点三:平行向量基本定理的应用例4设两个非零向量a与b不共线,(1)若eq\o(AB,\s\up6(→))=a+b,eq\o(BC,\s\up6(→))=2a+8b,eq\o(CD,\s\up6(→))=3(a-b),求证:A、B、D三点共线;(2)试确定实数k,使ka+b和a+kb共线.变式训练(1)已知向量eq\o(AB,\s\up6(→))=a+3b,eq\o(BC,\s\up6(→))=5a+3b,eq\o(CD,\s\up6(→))=-3a+3b,则()A.A,B,C三点共线 B.A,B,D三点共线C.A,C,D三点共线 D.B,C,D三点共线(2)设D,E分别是△ABC的边AB,BC上的点,AD=eq\f(1,2)AB,BE=eq\f(2,3)BC.若eq\o(DE,\s\up6(→))=λ1eq\o(AB,\s\up6(→))+λ2eq\o(AC,\s\up6(→))(λ1,λ2为实数),则λ1+λ2的值为________.当堂达标1.给出下列命题:①零向量的长度为零,方向是任意的;②若a,b都是单位向量,则a=b;③向量eq\o(AB,\s\up6(→))与eq\o(BA,\s\up6(→))相等.则所有正确命题的序号是()A.①B.③C.①③D.①②2.如图所示,向量a-b等于()A.-4e1-2e2 B.-2e1-4e2C.e1-3e2 D.3e1-e23.(2015·课标全国Ⅰ)设D为△ABC所在平面内一点,eq\o(BC,\s\up6(→))=3eq\o(CD,\s\up6(→)),则()A.eq\o(AD,\s\up6(→))=-eq\f(1,3)eq\o(AB,\s\up6(→))+eq\f(4,3)eq\o(AC,\s\up6(→)) B.eq\o(AD,\s\up6(→))=eq\f(1,3)eq\o(AB,\s\up6(→))-eq\f(4,3)eq\o(AC,\s\up6(→))C.eq\o(AD,\s\up6(→))=eq\f(4,3)eq\o(AB,\s\up6(→))+eq\f(1,3)eq\o(AC,\s\up6(→)) D.eq\o(AD,\s\up6(→))=eq\f(4,3)eq\o(AB,\s\up6(→))-eq\f(1,3)eq\o(AC,\s\up6(→))4.(教材改编)已知▱ABCD的对角线AC和BD相交于O,且eq\o(OA,\s\up6(→))=a,eq\o(OB,\s\up6(→))=b,则eq\o(DC,\s\up6(→))=________,eq\o(BC,\s\up6(→))=________(用a,b表示).5.已知a与b是两个不共线向量,且向量a+λb与-(b-3a)共线,则λ=________.巩固提高案日积月累提高自我1.设O是正方形ABCD的中心,则向量eq\o(AO,\s\up6(→)),eq\o(BO,\s\up6(→)),eq\o(OC,\s\up6(→)),eq\o(OD,\s\up6(→))是()A.相等的向量 B.平行的向量C.有相同起点的向量 D.模相等的向量2.设a0,b0分别是与a,b同向的单位向量,则下列结论中正确的是()A.a0=b0 B.a0·b0=1C.|a0|+|b0|=2 D.|a0+b0|=23.在四边形ABCD中,AB∥CD,AB=3DC,E为BC的中点,则eq\o(AE,\s\up6(→))等于()A.eq\f(2,3)eq\o(AB,\s\up6(→))+eq\f(1,2)eq\o(AD,\s\up6(→)) B.eq\f(1,2)eq\o(AB,\s\up6(→))+eq\f(2,3)eq\o(AD,\s\up6(→))C.eq\f(5,6)eq\o(AB,\s\up6(→))+eq\f(1,3)eq\o(AD,\s\up6(→)) D.eq\f(1,3)eq\o(AB,\s\up6(→))+eq\f(5,6)eq\o(AD,\s\up6(→))4.已知平面内一点P及△ABC,若eq\o(PA,\s\up6(→))+eq\o(PB,\s\up6(→))+eq\o(PC,\s\up6(→))=eq\o(AB,\s\up6(→)),则点P与△ABC的位置关系是()A.点P在线段AB上 B.点P在线段BC上C.点P在线段AC上 D.点P在△ABC外部5.已知点O为△ABC外接圆的圆心,且eq\o(OA,\s\up6(→))+eq\o(OB,\s\up6(→))+eq\o(OC,\s\up6(→))=0,则△ABC的内角A等于()A.30° B.60°C.90° D.120°6.已知O为四边形ABCD所在平面内一点,且向量eq\o(OA,\s\up6(→)),eq\o(OB,\s\up6(→)),eq\o(OC,\s\up6(→)),eq\o(OD,\s\up6(→))满足等式eq\o(OA,\s\up6(→))+eq\o(OC,\s\up6(→))=eq\o(OB,\s\up6(→))+eq\o(OD,\s\up6(→)),则四边形ABCD的形状为________.7.设点M是线段BC的中点,点A在直线BC外,eq\o(BC,\s\up6(→))2=16,|eq\o(AB,\s\up6(→))+eq\o(AC,\s\up6(→))|=|eq\o(AB,\s\up6(→))-eq\o(AC,\s\up6(→))|,则|eq\o(AM,\s\up6(→))|=________.8.(2015·北京)在△ABC中,点M,N满足eq\o(AM,\s\up6(→))=2eq\o(MC,\s\up6(→)),eq\o(BN,\s\up6(→))=eq\o(NC,\s\up6(→)).若eq\o(MN,\s\up6(→))=xeq\o(AB,\s\up6(→))+yeq\o(AC,\s\up6(→)),则x=________;y=________.9.在△ABC中,D、E分别为BC、AC边上的中点,G为BE上一点,且GB=2GE,设eq\o(AB,\s\up6(→))=a,eq\o(AC,\s\up6(→))=b,试用a,b表示eq\o(AD,\s\up6(→)),eq\o(AG,\s\up6(→)).10.设两个非零向量e1和e2不共线.(1)如果eq\o(AB,\s\up6(→))=e1-e2,eq\o(BC,\s\up6(→))=3e1+2e2,eq\o(CD,\s\up6(→))=-8e1-2e2,求证:A、C、D三点共线;(2)如果eq\o(AB,\s\up6(→))=e1+e2,eq\o(BC,\s\up6(→))=2e1-3e2,eq\o(CD,\s\up6(→))=2e1-ke2,且A、C、D三点共线,求k的值.学案5.1向量的线性运算自主预习案自主复习夯实基础【双基梳理】1.向量的有关概念名称定义备注向量具有大小和方向的量;向量的大小叫做向量的长度(或称模)平面向量是自由向量零向量长度为0的向量;其方向不确定记作0单位向量长度等于1个单位的向量非零向量a的单位向量为±eq\f(a,|a|)平行向量(共线向量)共线向量的方向相同或相反0与任意向量平行或共线相等向量大小、方向都相同的向量两向量只有相等或不等,不能比较大小相反向量长度相等且方向相反的向量0的相反向量为02.向量的线性运算向量运算定义法则(或几何意义)运算律向量的加法求两个向量和的运算(1)交换律:a+b=b+a.(2)结合律:(a+b)+c=a+(b+c).向量的减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘向量求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0或a=0时,λa=0(1)(λ+μ)a=λa+μa;(2)λ(μa)=(λμ)a;(3)λ(a+b)=λa+λb3.平行向量基本定理如果a=λb,则a∥b;反之,如果a∥b,且b≠0,则一定存在唯一一个实数λ,使a=λb.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)向量与有向线段是一样的,因此可以用有向线段来表示向量.(×)(2)|a|与|b|是否相等与a,b的方向无关.(√)(3)若a∥b,b∥c,则a∥c.(×)(4)向量eq\o(AB,\s\up6(→))与向量eq\o(CD,\s\up6(→))是共线向量,则A,B,C,D四点在一条直线上.(×)(5)当两个非零向量a,b共线时,一定有b=λa,反之成立.(√)(6)△ABC中,D是BC中点,则eq\o(AD,\s\up6(→))=eq\f(1,2)(eq\o(AC,\s\up6(→))+eq\o(AB,\s\up6(→))).(√)

考点探究案典例剖析考点突破考点一平面向量的概念例1下列命题中,正确的是________.(填序号)①有向线段就是向量,向量就是有向线段;②向量a与向量b平行,则a与b的方向相同或相反;③向量eq\o(AB,\s\up6(→))与向量eq\o(CD,\s\up6(→))共线,则A、B、C、D四点共线;④两个向量不能比较大小,但它们的模能比较大小.答案④解析①不正确,向量可以用有向线段表示,但向量不是有向线段,有向线段也不是向量;②不正确,若a与b中有一个为零向量,零向量的方向是不确定的,故两向量方向不一定相同或相反;③不正确,共线向量所在的直线可以重合,也可以平行;④正确,向量既有大小,又有方向,不能比较大小;向量的模均为实数,可以比较大小.思维升华(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.(4)非零向量a与eq\f(a,|a|)的关系:eq\f(a,|a|)是与a同方向的单位向量.变式训练:设a0为单位向量,①若a为平面内的某个向量,则a=|a|a0;②若a与a0平行,则a=|a|a0;③若a与a0平行且|a|=1,则a=a0.上述命题中,假命题的个数是()A.0 B.1C.2 D.3答案D解析向量是既有大小又有方向的量,a与|a|a0的模相同,但方向不一定相同,故①是假命题;若a与a0平行,则a与a0的方向有两种情况:一是同向,二是反向,反向时a=-|a|a0,故②③也是假命题.综上所述,假命题的个数是3.考点二平面向量的线性运算命题点1向量的线性运算例2(1)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则eq\o(EB,\s\up6(→))+eq\o(FC,\s\up6(→))等于()A.eq\o(BC,\s\up6(→)) B.eq\f(1,2)eq\o(AD,\s\up6(→))C.eq\o(AD,\s\up6(→)) D.eq\f(1,2)eq\o(BC,\s\up6(→))(2)在△ABC中,eq\o(AB,\s\up6(→))=c,eq\o(AC,\s\up6(→))=b,若点D满足eq\o(BD,\s\up6(→))=2eq\o(DC,\s\up6(→)),则eq\o(AD,\s\up6(→))等于()A.eq\f(2,3)b+eq\f(1,3)c B.eq\f(5,3)c-eq\f(2,3)bC.eq\f(2,3)b-eq\f(1,3)c D.eq\f(1,3)b+eq\f(2,3)c答案(1)C(2)A解析(1)eq\o(EB,\s\up6(→))+eq\o(FC,\s\up6(→))=eq\f(1,2)(eq\o(AB,\s\up6(→))+eq\o(CB,\s\up6(→)))+eq\f(1,2)(eq\o(AC,\s\up6(→))+eq\o(BC,\s\up6(→)))=eq\f(1,2)(eq\o(AB,\s\up6(→))+eq\o(AC,\s\up6(→)))=eq\o(AD,\s\up6(→)).(2)∵eq\o(BD,\s\up6(→))=2eq\o(DC,\s\up6(→)),∴eq\o(AD,\s\up6(→))-eq\o(AB,\s\up6(→))=eq\o(BD,\s\up6(→))=2eq\o(DC,\s\up6(→))=2(eq\o(AC,\s\up6(→))-eq\o(AD,\s\up6(→))),∴3eq\o(AD,\s\up6(→))=2eq\o(AC,\s\up6(→))+eq\o(AB,\s\up6(→)),∴eq\o(AD,\s\up6(→))=eq\f(2,3)eq\o(AC,\s\up6(→))+eq\f(1,3)eq\o(AB,\s\up6(→))=eq\f(2,3)b+eq\f(1,3)c.命题点2根据向量线性运算求参数例3(1)在△ABC中,已知D是AB边上的一点,若eq\o(AD,\s\up6(→))=2eq\o(DB,\s\up6(→)),eq\o(CD,\s\up6(→))=eq\f(1,3)eq\o(CA,\s\up6(→))+λeq\o(CB,\s\up6(→)),则λ等于()A.eq\f(2,3) B.eq\f(1,3)C.-eq\f(1,3) D.-eq\f(2,3)(2)在△ABC中,点D在线段BC的延长线上,且eq\o(BC,\s\up6(→))=3eq\o(CD,\s\up6(→)),点O在线段CD上(与点C,D不重合),若eq\o(AO,\s\up6(→))=xeq\o(AB,\s\up6(→))+(1-x)eq\o(AC,\s\up6(→)),则x的取值范围是()A.eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,2))) B.eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,3)))C.eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,2),0)) D.eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,3),0))答案(1)A(2)D解析(1)∵eq\o(AD,\s\up6(→))=2eq\o(DB,\s\up6(→)),即eq\o(CD,\s\up6(→))-eq\o(CA,\s\up6(→))=2(eq\o(CB,\s\up6(→))-eq\o(CD,\s\up6(→))),∴eq\o(CD,\s\up6(→))=eq\f(1,3)eq\o(CA,\s\up6(→))+eq\f(2,3)eq\o(CB,\s\up6(→)),∴λ=eq\f(2,3).(2)设eq\o(CO,\s\up6(→))=yeq\o(BC,\s\up6(→)),∵eq\o(AO,\s\up6(→))=eq\o(AC,\s\up6(→))+eq\o(CO,\s\up6(→))=eq\o(AC,\s\up6(→))+yeq\o(BC,\s\up6(→))=eq\o(AC,\s\up6(→))+y(eq\o(AC,\s\up6(→))-eq\o(AB,\s\up6(→)))=-yeq\o(AB,\s\up6(→))+(1+y)eq\o(AC,\s\up6(→)).∵eq\o(BC,\s\up6(→))=3eq\o(CD,\s\up6(→)),点O在线段CD上(与点C,D不重合),∴y∈eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,3))),∵eq\o(AO,\s\up6(→))=xeq\o(AB,\s\up6(→))+(1-x)eq\o(AC,\s\up6(→)),∴x=-y,∴x∈eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,3),0)).变式训练:如图,一直线EF与平行四边形ABCD的两边AB,AD分别交于E,F两点,且交对角线AC于K,其中,eq\o(AE,\s\up6(→))=eq\f(2,5)eq\o(AB,\s\up6(→)),eq\o(AF,\s\up6(→))=eq\f(1,2)eq\o(AD,\s\up6(→)),eq\o(AK,\s\up6(→))=λeq\o(AC,\s\up6(→)),则λ的值为()A.eq\f(2,9) B.eq\f(2,7)C.eq\f(2,5) D.eq\f(2,3)答案A解析∵eq\o(AE,\s\up6(→))=eq\f(2,5)eq\o(AB,\s\up6(→)),eq\o(AF,\s\up6(→))=eq\f(1,2)eq\o(AD,\s\up6(→)),∴eq\o(AB,\s\up6(→))=eq\f(5,2)eq\o(AE,\s\up6(→)),eq\o(AD,\s\up6(→))=2eq\o(AF,\s\up6(→)).由向量加法的平行四边形法则可知,eq\o(AC,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→)),∴eq\o(AK,\s\up6(→))=λeq\o(AC,\s\up6(→))=λ(eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→)))=λeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(5,2)\o(AE,\s\up6(→))+2\o(AF,\s\up6(→))))=eq\f(5,2)λeq\o(AE,\s\up6(→))+2λeq\o(AF,\s\up6(→)),由E,F,K三点共线,可得λ=eq\f(2,9),故选A.考点三:平行向量基本定理的应用例4设两个非零向量a与b不共线,(1)若eq\o(AB,\s\up6(→))=a+b,eq\o(BC,\s\up6(→))=2a+8b,eq\o(CD,\s\up6(→))=3(a-b),求证:A、B、D三点共线;(2)试确定实数k,使ka+b和a+kb共线.(1)证明∵eq\o(AB,\s\up6(→))=a+b,eq\o(BC,\s\up6(→))=2a+8b,eq\o(CD,\s\up6(→))=3(a-b),∴eq\o(BD,\s\up6(→))=eq\o(BC,\s\up6(→))+eq\o(CD,\s\up6(→))=2a+8b+3(a-b)=2a+8b+3a-3b=5(a+b)=5eq\o(AB,\s\up6(→)).∴eq\o(AB,\s\up6(→))、eq\o(BD,\s\up6(→))共线,又∵它们有公共点B,∴A、B、D三点共线.(2)解∵ka+b和a+kb共线,∴存在实数λ,使ka+b=λ(a+kb),即ka+b=λa+λkb.∴(k-λ)a=(λk-1)b.∵a、b是两个不共线的非零向量,∴k-λ=λk-1=0,∴k2-1=0.∴k=±1.变式训练(1)已知向量eq\o(AB,\s\up6(→))=a+3b,eq\o(BC,\s\up6(→))=5a+3b,eq\o(CD,\s\up6(→))=-3a+3b,则()A.A,B,C三点共线 B.A,B,D三点共线C.A,C,D三点共线 D.B,C,D三点共线(2)设D,E分别是△ABC的边AB,BC上的点,AD=eq\f(1,2)AB,BE=eq\f(2,3)BC.若eq\o(DE,\s\up6(→))=λ1eq\o(AB,\s\up6(→))+λ2eq\o(AC,\s\up6(→))(λ1,λ2为实数),则λ1+λ2的值为________.答案(1)B(2)eq\f(1,2)解析(1)∵eq\o(BD,\s\up6(→))=eq\o(BC,\s\up6(→))+eq\o(CD,\s\up6(→))=2a+6b=2(a+3b)=2eq\o(AB,\s\up6(→)),∴eq\o(BD,\s\up6(→))、eq\o(AB,\s\up6(→))共线,又有公共点B,∴A,B,D三点共线.故选B.(2)eq\o(DE,\s\up6(→))=eq\o(DB,\s\up6(→))+eq\o(BE,\s\up6(→))=eq\f(1,2)eq\o(AB,\s\up6(→))+eq\f(2,3)eq\o(BC,\s\up6(→))=eq\f(1,2)eq\o(AB,\s\up6(→))+eq\f(2,3)(eq\o(AC,\s\up6(→))-eq\o(AB,\s\up6(→)))=-eq\f(1,6)eq\o(AB,\s\up6(→))+eq\f(2,3)eq\o(AC,\s\up6(→)),∵eq\o(DE,\s\up6(→))=λ1eq\o(AB,\s\up6(→))+λ2eq\o(AC,\s\up6(→)),∴λ1=-eq\f(1,6),λ2=eq\f(2,3),故λ1+λ2=eq\f(1,2).当堂达标1.给出下列命题:①零向量的长度为零,方向是任意的;②若a,b都是单位向量,则a=b;③向量eq\o(AB,\s\up6(→))与eq\o(BA,\s\up6(→))相等.则所有正确命题的序号是()A.①B.③C.①③D.①②答案A解析根据零向量的定义可知①正确;根据单位向量的定义可知,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等,故②错误;向量eq\o(AB,\s\up6(→))与eq\o(BA,\s\up6(→))互为相反向量,故③错误.2.如图所示,向量a-b等于()A.-4e1-2e2 B.-2e1-4e2C.e1-3e2 D.3e1-e2答案C解析由题图可得a-b=eq\o(BA,\s\up6(→))=e1-3e2.3.(2015·课标全国Ⅰ)设D为△ABC所在平面内一点,eq\o(BC,\s\up6(→))=3eq\o(CD,\s\up6(→)),则()A.eq\o(AD,\s\up6(→))=-eq\f(1,3)eq\o(AB,\s\up6(→))+eq\f(4,3)eq\o(AC,\s\up6(→)) B.eq\o(AD,\s\up6(→))=eq\f(1,3)eq\o(AB,\s\up6(→))-eq\f(4,3)eq\o(AC,\s\up6(→))C.eq\o(AD,\s\up6(→))=eq\f(4,3)eq\o(AB,\s\up6(→))+eq\f(1,3)eq\o(AC,\s\up6(→)) D.eq\o(AD,\s\up6(→))=eq\f(4,3)eq\o(AB,\s\up6(→))-eq\f(1,3)eq\o(AC,\s\up6(→))答案A解析∵eq\o(BC,\s\up6(→))=3eq\o(CD,\s\up6(→)),∴eq\o(AC,\s\up6(→))-eq\o(AB,\s\up6(→))=3(eq\o(AD,\s\up6(→))-eq\o(AC,\s\up6(→))),即4eq\o(AC,\s\up6(→))-eq\o(AB,\s\up6(→))=3eq\o(AD,\s\up6(→)),∴eq\o(AD,\s\up6(→))=-eq\f(1,3)eq\o(AB,\s\up6(→))+eq\f(4,3)eq\o(AC,\s\up6(→)).4.(教材改编)已知▱ABCD的对角线AC和BD相交于O,且eq\o(OA,\s\up6(→))=a,eq\o(OB,\s\up6(→))=b,则eq\o(DC,\s\up6(→))=________,eq\o(BC,\s\up6(→))=________(用a,b表示).答案b-a-a-b解析如图,eq\o(DC,\s\up6(→))=eq\o(AB,\s\up6(→))=eq\o(OB,\s\up6(→))-eq\o(OA,\s\up6(→))=b-a,eq\o(BC,\s\up6(→))=eq\o(OC,\s\up6(→))-eq\o(OB,\s\up6(→))=-eq\o(OA,\s\up6(→))-eq\o(OB,\s\up6(→))=-a-b.5.已知a与b是两个不共线向量,且向量a+λb与-(b-3a)共线,则λ=________.答案-eq\f(1,3)解析由已知得a+λb=-k(b-3a),∴eq\b\lc\{\rc\(\a\vs4\al\co1(λ=-k,,3k=1.))解得eq\b\lc\{\rc\(\a\vs4\al\co1(λ=-\f(1,3),,k=\f(1,3).))巩固提高案日积月累提高自我1.设O是正方形ABCD的中心,则向量eq\o(AO,\s\up6(→)),eq\o(BO,\s\up6(→)),eq\o(OC,\s\up6(→)),eq\o(OD,\s\up6(→))是()A.相等的向量 B.平行的向量C.有相同起点的向量 D.模相等的向量答案D解析这四个向量的模相等.2.设a0,b0分别是与a,b同向的单位向量,则下列结论中正确的是()A.a0=b0 B.a0·b0=1C.|a0|+|b0|=2 D.|a0+b0|=2答案C解析因为是单位向量,所以|a0|=1,|b0|=1.3.在四边形ABCD中,AB∥CD,AB=3DC,E为BC的中点,则eq\o(AE,\s\up6(→))等于()A.eq\f(2,3)eq\o(AB,\s\up6(→))+eq\f(1,2)eq\o(AD,\s\up6(→)) B.eq\f(1,2)eq\o(AB,\s\up6(→))+eq\f(2,3)eq\o(AD,\s\up6(→))C.eq\f(5,6)eq\o(AB,\s\up6(→))+eq\f(1,3)eq\o(AD,\s\up6(→)) D.eq\f(1,3)eq\o(AB,\s\up6(→))+eq\f(5,6)eq\o(AD,\s\up6(→))答案A解析eq\o(BC,\s\up6(→))=eq\o(BA,\s\up6(→))+eq\o(AD,\s\up6(→))+eq\o(DC,\s\up6(→))=-eq\f(2,3)eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→)),eq\o(AE,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\o(BE,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\f(1,2)eq\o(BC,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\f(1,2)eq\b\lc\(\rc\)(\a\vs4\al\co1(\o(AD,\s\up6(→))-\f(2,3)\o(AB,\s\up6(→))))=eq\f(2,3)eq\o(AB,\s\up6(→))+eq\f(1,2)eq\o(AD,\s\up6(→)).4.已知平面内一点P及△ABC,若eq\o(PA,\s\up6(→))+eq\o(PB,\s\up6(→))+eq\o(PC,\s\up6(→))=eq\o(AB,\s\up6(→)),则点P与△ABC的位置关系是()A.点P在线段AB上 B.点P在线段BC上C.点P在线段AC上 D.点P在△ABC外部答案C解析由eq\o(PA,\s\up6(→))+eq\o(PB,\s\up6(→))+eq\o(PC,\s\up6(→))=eq\o(AB,\s\up6(→))得eq\o(PA,\s\up6(→))+eq\o(PC,\s\up6(→))=eq\o(AB,\s\up6(→))-eq\o(PB,\s\up6(→))=eq\o(AP,\s\up6(→)),即eq\o(PC,\s\up6(→))=eq\o(AP,\s\up6(→))-eq\o(PA,\s\up6(→))=2eq\o(AP,\s\up6(→)),所以点P在线段AC上.5.已知点O为△ABC外接圆的圆心,且eq\o(OA,\s\up6(→))+eq\o(OB,\s\up6(→))+eq\o(OC,\s\up6(→))=0,则△ABC的内角A等于()A.30° B.60°C.90° D.120°答案B解析由eq\o(OA,\s\up6(→))+eq\o(OB,\s\up6(→))+eq\o(OC,\s\up6(→))=0,知点O为△ABC的重心,又∵O为△ABC外接圆的圆心,∴△ABC为等边三角形,A=60°.6.已知O为四边形ABCD所在平面内一点,且向量eq\o(OA,\s\up6(→)),eq\o(OB,\s\up6(→)),eq\o(OC,\s\up6(→)),eq\o(OD,\s\up6(→))满足等式eq\o(OA,\s\up6(→))+eq\o(OC,\s\up6(→))=eq\o(OB,\s\up6(→))+eq\o(OD,\s\up6(→)),则四边形ABCD的形状为________.答案平行四边形解析由eq\o(OA,\s\up6(→))+eq\o(OC,\s\up6(→))=eq\o(OB,\s\up6(→))+eq\o(OD,\s\up6(→))得eq\o(OA,\s\up6(→))-eq\o(OB,\s\up6(→))=eq\o(OD,\s\up6(→))-eq\o(OC,\s\up6(→)),所以eq\o(BA,\s\up6(→))=eq\o(CD,\s\up6(→)).所以四边形ABCD为平行四边形.7.设点M是线段BC的中点,点A在直线BC外,eq\o(BC,\s\up6(→))2=16,|eq\o(AB,\s\up6(→))+eq\o(AC,\s\up6(→))|=|eq\o(AB,\s\up6(→))-eq\o(AC,\s\up6(→))|,则|eq\o(AM,\s\up6(→))|=________.答案2解析由|eq\o(AB,\s\up6(→))+eq\o(AC,\s\up6(→))|=|eq\o(AB,\s\up6(→))-eq\o(AC,\s\up6(→))|可知,eq\o(AB,\s\up6(→))⊥eq\o(AC,\s\up6(→)),则AM为Rt△ABC斜边BC上的中线,因此,|eq\o(AM,\s\up6(→))|=eq\f(1,2)|eq\o(BC,\s\up6(→))|=2.8.(2015·北京)在△ABC中,点M,N满足eq\o(AM,\s\up6(→))=2eq\o(MC,\s\up6(→)),eq\o(BN,\s\up6(→))=eq\o(NC,\s\up6(→)).若eq\o(MN,\s\up6(→))=xeq\o(AB,\s\up6(→))+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论