




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2.2椭圆的简单几何性质(三)1-----直线与椭圆的位置关系2-----弦长公式标准方程范围对称性顶点坐标焦点坐标半轴长离心率a、b、c的关系|x|≤a,|y|≤b关于x轴、y轴成轴对称;关于原点成中心对称(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)长半轴长为a,短半轴长为b.a>ba2=b2+c2|x|≤b,|y|≤a同前(b,0)、(-b,0)、(0,a)、(0,-a)(0,c)、(0,-c)同前同前同前复习1.点与椭圆的位置关系回忆:直线与圆的位置关系1.位置关系:相交、相切、相离2.判别方法(代数法)
联立直线与椭圆的方程消元得到二元一次方程组
(1)△>0
直线与圆相交
有两个公共点;
(2)△=0
直线与圆相切
有且只有一个公共点;
(3)△<0
直线与圆相离
无公共点.通法2,直线与椭圆的位置关系种类:相离(没有交点)相切(一个交点)相交(二个交点)相离(没有交点)相切(一个交点)相交(二个交点)
直线与椭圆的位置关系的判定mx2+nx+p=0(m≠0)Ax+By+C=0由方程组:<0方程组无解相离无交点=0方程组有一解相切一个交点>0相交方程组有两解两个交点代数方法=n2-4mp1.位置关系:相交、相切、相离2.判别方法(代数法)
联立直线与椭圆的方程消元得到二元一次方程组
(1)△>0
直线与椭圆相交
有两个公共点;
(2)△=0
直线与椭圆相切
有且只有一个公共点;
(3)△<0
直线与椭圆相离
无公共点.通法直线与椭圆的位置关系例1.K为何值时,直线y=kx+2和曲线2x2+3y2=6有两个公共点?有一个公共点?没有公共点?例2.无论k为何值,直线y=kx+2和曲线交点情况满足()A.没有公共点B.一个公共点C.两个公共点D.有公共点D直线与椭圆的位置关系oxy直线与椭圆的位置关系oxy思考:最大的距离是多少?直线与椭圆的位置关系练习:已知直线y=x-与椭圆x2+4y2=2,判断它们的位置关系。x2+4y2=2解:联立方程组消去y∆>0因为所以,方程(1)有两个根,那么,相交所得的弦的弦长是多少?则原方程组有两组解….-----(1)由韦达定理直线与椭圆的位置关系设直线与椭圆交于P1(x1,y1),P2(x2,y2)两点,直线P1P2的斜率为k.弦长公式:3弦长公式例:已知斜率为1的直线L过椭圆的右焦点,交椭圆于A,B两点,求弦AB之长.3弦长公式解:3.若P(x,y)满足,求的最大值、最小值.例
:已知椭圆过点P(2,1)引一弦,使弦在这点被
平分,求此弦所在直线的方程.解:韦达定理→斜率韦达定理法:利用韦达定理及中点坐标公式来构造弦中点问题例
:已知椭圆过点P(2,1)引一弦,使弦在这点被平分,求此弦所在直线的方程.点差法:利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率.点作差弦中点问题例:已知椭圆过点P(2,1)引一弦,使弦在这点被平分,求此弦所在直线的方程.所以x2+4y2=(4-x)2+4(2-y)2,整理得x+2y-4=0从而A,B在直线x+2y-4=0上而过A,B两点的直线有且只有一条解后反思:中点弦问题求解关键在于充分利用“中点”这一条件,灵活运用中点坐标公式及韦达定理,弦中点问题练习:1、如果椭圆被的弦被(4,2)平分,那么这弦所在直线方程为()A、x-2y=0B、x+2y-4=0C、2x+3y-12=0D、x+2y-8=02、y=kx+1与椭圆恰有公共点,则m的范围()
A、(0,1)B、(0,5)
C、[1,5)∪(5,+∞
)D、(1,+∞
)3、过椭圆x2+2y2=4的左焦点作倾斜角为300的直线,则弦长|AB|=_______,DC1、直线与椭圆的三种位置关系及判断方法;2、弦长的计算方法:弦长公式:
|AB|=
=(适用于任何曲线)
小结3、弦中点问题的两种处理方法:(1)联立方程组,消去一个未知数,利用韦达定理;(2)设两端点坐标,代入曲线方程相减可求出弦的斜率。
1、直线与椭圆的三种位置关系及判断方法;2、弦长的计算方法:弦长公式:
|AB|=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 矿用照明与安全标识设备考核试卷
- 毛巾类制品的库存控制与仓储管理考核试卷
- 劳务派遣服务的客户关系优化策略制定与执行评估考核试卷
- 石膏在轻质隔墙板制造中的应用考核试卷
- 生态环境监测在环境教育中的重要性考核试卷
- 电视机修理操作流程考核试卷
- 碱金属与水的反应研究考核试卷
- 纺织机械的智能工厂运营管理策略优化考核试卷
- 天津医科大学临床医学院《舞蹈与健康》2023-2024学年第二学期期末试卷
- 吉林水利电力职业学院《清代宫廷文化史》2023-2024学年第二学期期末试卷
- 小班数学课件《拼一拼-数一数》
- 网球推广计划和方案
- FUJI-FLEXA编程流程-课件
- 2023《高等教育法规》考试复习题库(核心400题)
- 云平台总体建设方案1
- 第五章 中国特色社会主义理论体系的形成发展(一)
- 大学生信息安全竞赛创新实践能力赛题库(附答案)
- 平顶山职业技术学院单招《语文》备考试题库(含答案)
- 火灾事故中的紧急抢救与复苏技巧
- 学校保安、宿管服务投标方案技术标
- (中职)ZZ017数字产品检测与维护赛项规程(师生同赛)(5月10日更新)
评论
0/150
提交评论