




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版中学七年级下册数学期末试卷含解析一、选择题1.下列图形中,与是同旁内角的是()A. B. C. D.2.在下面的四幅图案中,能通过图案(1)平移得到的是()A. B. C. D.3.若点P在x轴的下方,y轴的右方,到x轴、y轴的距离分别是3和4,则点P的坐标为()A.(4,﹣3) B.(﹣4,3) C.(﹣3,4) D.(3,4)4.下列命题是假命题的是()A.同位角相等,两直线平行B.三角形的一个外角等于与它不相邻的两个内角的和C.平行于同一条直线的两条直线平行D.平面内,到一个角两边距离相等的点在这个角的平分线上5.如果,直线,,则等于()A. B. C. D.6.下列说法中:①立方根等于本身的是,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是()A.3 B.4 C.5 D.67.珠江流域某江段江水流向经过B、C、D三点,拐弯后与原来方向相同.如图,若∠ABC=120°,∠BCD=80°,则∠CDE等于()A.20° B.40° C.60° D.80°8.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为……根据这个规律,第个点的坐标为()A. B. C. D.九、填空题9.已知≈18.044,那么±≈___________.十、填空题10.平面直角坐标系中,点关于y轴的对称点的坐标为________.十一、填空题11.如图,BD、CE为△ABC的两条角平分线,则图中∠1、∠2、∠A之间的关系为___________.十二、填空题12.将一副直角三角板如图放置(其中,),点在上,,则的度数是______.十三、填空题13.如图,折叠宽度相等的长方形纸条,若∠1=54°,则∠2=____度.十四、填空题14.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第棵树种植在点处,其中,当时,,表示非负实数的整数部分,例如,.按此方案,第6棵树种植点为________;第2011棵树种植点________.十五、填空题15.点到两坐标轴的距离相等,则________.十六、填空题16.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断移动,每移动一个单位,得到点,,,,…,那么点的坐标为__________.十七、解答题17.计算下列各题:(1)+-(2).十八、解答题18.求下列各式中x的值.(1)4x2=64;(2)3(x﹣1)3+24=0.十九、解答题19.如图.试问、、有什么关系?解:,理由如下:过点作则______()又∵,∴____________()∴____________()∴()即____________二十、解答题20.与在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:;;;(2)说明由经过怎样的平移得到?答:_______________.(3)若点是内部一点,则平移后内的对应点的坐标为_________;(4)求的面积.二十一、解答题21.如图,数轴的正半轴上有,,三点,点,表示数和.点到点的距离与点到点的距离相等,设点所表示的数为.(1)请你求出数的值.(2)若为的相反数,为的绝对值,求的整数部分的立方根.二十二、解答题22.小丽想用一块面积为的正方形纸片,如图所示,沿着边的方向裁出一块面积为的长方形纸片,使它的长是宽的2倍.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗?为什么?二十三、解答题23.如图1,点在直线、之间,且.(1)求证:;(2)若点是直线上的一点,且,平分交直线于点,若,求的度数;(3)如图3,点是直线、外一点,且满足,,与交于点.已知,且,则的度数为______(请直接写出答案,用含的式子表示).二十四、解答题24.已知点A,B,O在一条直线上,以点O为端点在直线AB的同一侧作射线,,使.(1)如图①,若平分,求的度数;(2)如图②,将绕点O按逆时针方向转动到某个位置时,使得所在射线把分成两个角.①若,求的度数;②若(n为正整数),直接用含n的代数式表示.二十五、解答题25.如图,在中,与的角平分线交于点.(1)若,则;(2)若,则;(3)若,与的角平分线交于点,的平分线与的平分线交于点,,的平分线与的平分线交于点,则.【参考答案】一、选择题1.A解析:A【分析】根据同旁内角的定义去判断【详解】∵A选项中的两个角,符合同旁内角的定义,∴选项A正确;∵B选项中的两个角,不符合同旁内角的定义,∴选项B错误;∵C选项中的两个角,不符合同旁内角的定义,∴选项C错误;∵D选项中的两个角,不符合同旁内角的定义,∴选项D错误;故选A.【点睛】本题考查了同旁内角的定义,结合图形准确判断是解题的关键.2.C【分析】平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可.【详解】解:A、对应点的连线相交,不能通过平移得到,不符合题意;B、对应点的连线相交,不能通过平移得到,不符合题解析:C【分析】平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可.【详解】解:A、对应点的连线相交,不能通过平移得到,不符合题意;B、对应点的连线相交,不能通过平移得到,不符合题意;C、可通过平移得到,符合题意;D、对应点的连线相交,不能通过平移得到,不符合题意;故选:C.【点睛】本题考查了平移变换,解题的关键是熟练掌握平移变换的性质,属于中考常考题型.3.A【分析】根据点的坐标的几何意义及点在第四象限内的坐标符号的特点解答即可.【详解】点P在x轴的下方,y轴的右方,点P在第四象限,又点P到x轴、y轴的距离分别是3和4,点P的横坐标是4,纵坐标是-3,即点P的坐标为,故选:A.【点睛】本题主要考查了点在在第四象限内的坐标符号,以及横坐标的绝对值解释到y轴的距离,纵坐标的绝对值就是到x轴的距离.4.D【分析】利用平行线的判定、三角形的外角的性质、角平分线的判定等知识分别判断后即可确定正确的选项.【详解】解:A、同位角相等,两直线平行,正确,是真命题,不符合题意;B、三角形的一个外角等于与它不相邻的两个内角的和,正确,是真命题,不符合题意;C、平行于同一条直线的两条直线平行,正确,是真命题,不符合题意;D、角的内部,到一个角两边距离相等的点在这个角的平分线上,故原命题错误,是假命题,符合题意;故选:D.【点睛】考查了命题与定理的知识,解题的关键是了解平行线的判定、三角形的外角的性质、角平分线的判定等知识,难度不大.5.B【分析】先求∠DFE的度数,再利用平角的定义计算求解即可.【详解】∵AB∥CD,∴∠DFE=∠A=65°,∴∠EFC=180°-∠DFE=115°,故选B.【点睛】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.6.A【分析】根据平方根和立方根的性质,以及无理数的性质判断选项的正确性.【详解】解:立方根等于本身的数有:,1,0,故①正确;平方根等于本身的数有:0,故②错误;两个无理数的和不一定是无理数,比如和的和是0,是有理数,故③错误;实数与数轴上的点一一对应,故④正确;是无理数,不是分数,故⑤错误;从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故⑥正确.故选:A.【点睛】本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念.7.A【分析】过点C作CF∥AB,则CF∥DE,利用平行线的性质和角的等量代换求解即可.【详解】解:由题意得,AB∥DE,过点C作CF∥AB,则CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故选:A.【点睛】本题主要考查了平行线的性质,合理作出辅助线是解题的关键.8.A【分析】根据图形和数字规律、直角坐标系的性质,首先根据题意,第个点的坐标为:第个点的坐标为第个点的坐标为:再总结规律,通过计算即可得到答案.【详解】解:根据题意,第个点的坐标为:解析:A【分析】根据图形和数字规律、直角坐标系的性质,首先根据题意,第个点的坐标为:第个点的坐标为第个点的坐标为:再总结规律,通过计算即可得到答案.【详解】解:根据题意,第个点的坐标为:第个点的坐标为第个点的坐标为:所以第个点的坐标为:,∵,∴第2025个数为:∴第2021个数为第2025个数向上推4个数,即故选:A.【点睛】本题考查了直角坐标系、图形和数字规律的知识;解题的关键是熟练掌握直角坐标系、图形和数字规律的性质,从而完成求解.九、填空题9.±1.8044【详解】∵,∴,即.故答案为±1.8044解析:±1.8044【详解】∵,∴,即.故答案为±1.8044十、填空题10.(3,-1)【分析】让纵坐标不变,横坐标互为相反数可得所求点的坐标.【详解】解:∵-3的相反数为3,∴所求点的横坐标为3,纵坐标为-1,故答案为(3,-1).【点睛】本题考查关于y轴解析:(3,-1)【分析】让纵坐标不变,横坐标互为相反数可得所求点的坐标.【详解】解:∵-3的相反数为3,∴所求点的横坐标为3,纵坐标为-1,故答案为(3,-1).【点睛】本题考查关于y轴对称的点特点;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标不变.十一、填空题11.∠1+∠2-∠A=90°【分析】先根据三角形的外角等于与它不相邻的两个内角的和,写出∠1+∠2与∠A的关系,再根据三角形内角和等于180°,求出∠1+∠2与∠A的度数关系.【详解】∵BD、C解析:∠1+∠2-∠A=90°【分析】先根据三角形的外角等于与它不相邻的两个内角的和,写出∠1+∠2与∠A的关系,再根据三角形内角和等于180°,求出∠1+∠2与∠A的度数关系.【详解】∵BD、CE为△ABC的两条角平分线,∴∠ABD=∠ABC,∠ACE=∠ACB,∵∠1=∠ACE+∠A,∠2=∠ABD+∠A∴∠1+∠2=∠ACE+∠A+∠ABD+∠A=∠ABC+∠ACB+∠A+∠A=(∠ABC+∠ACB+∠A)+∠A=90°+∠A故答案为∠1+∠2-∠A=90°.【点睛】考查了三角形的内角和等于180°、外角与内角关系及角平分线的性质,是基础题.三角形的外角与内角间的关系:三角形的外角与它相邻的内角互补,等于与它不相邻的两个内角的和.十二、填空题12.【分析】由题意得∠ACB=30°,∠DEF=45°,根据ED∥BC,可以得到∠DEC=∠ACB=30°,即可求解.【详解】解:由图形可知:∠ACB=30°,∠DEF=45°∵ED∥BC,解析:【分析】由题意得∠ACB=30°,∠DEF=45°,根据ED∥BC,可以得到∠DEC=∠ACB=30°,即可求解.【详解】解:由图形可知:∠ACB=30°,∠DEF=45°∵ED∥BC,∴∠DEC=∠ACB=30°∴∠CEF=∠DEF-∠DEC=45°-30°=15°,∴∠AEF=180°-∠CEF=165°故答案为:165°.【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质.十三、填空题13.72【分析】根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得.【详解】解:如图,长方形的两边平行,,折叠,,.故答案为:.【点睛】本题考查了平行线的性质,折叠的解析:72【分析】根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得.【详解】解:如图,长方形的两边平行,,折叠,,.故答案为:.【点睛】本题考查了平行线的性质,折叠的性质,掌握以上知识是解题的关键.十四、填空题14.403【解析】当k=6时,x6=T(1)+1=1+1=2,当k=2011时,=T()+1=403.故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk的表达解析:403【解析】当k=6时,x6=T(1)+1=1+1=2,当k=2011时,=T()+1=403.故答案是:2,403.【点睛】本题考查了坐标确定位置,读懂题目信息,理解xk的表达式并写出用T表示出的表达式是解题的关键.十五、填空题15.或.【分析】根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可.【详解】解:∵点到两坐标轴的距离相等,∴,或,解得,或,故答案为:或.【点睛】本题考查了点到坐标轴的距解析:或.【分析】根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可.【详解】解:∵点到两坐标轴的距离相等,∴,或,解得,或,故答案为:或.【点睛】本题考查了点到坐标轴的距离,解题关键是明确到坐标轴的距离是坐标的绝对值.十六、填空题16.【分析】由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An的一般规律,从而可求得结果.【详解】∵,,,∴根据点的平移规律,可分别得:,,,,,,,,…,,,解析:【分析】由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An的一般规律,从而可求得结果.【详解】∵,,,∴根据点的平移规律,可分别得:,,,,,,,,…,,,,∵2021=505×4+1∴的横坐标为2×505=1010,纵坐标为1即故答案为:【点睛】本题考查了平面直角坐标系中点的坐标的规律问题,点平移的坐标特征,体现了由特殊到一般的数学思想,关键是由前面若干点的的坐标寻找出规律.十七、解答题17.(1)1(2)【详解】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式=;(2)原式=-3-0-+0.5+=解析:(1)1(2)【详解】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式=;(2)原式=-3-0-+0.5+=十八、解答题18.(1)x=±4;(2)x=-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可.【详解】解:(1)4x2=64,∴x2=16,∴x=±4;(2)3(x-1)解析:(1)x=±4;(2)x=-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可.【详解】解:(1)4x2=64,∴x2=16,∴x=±4;(2)3(x-1)3+24=0,∴3(x-1)3=-24,∴(x-1)3=-8,∴x-1=-2,∴x=-1.【点睛】本题主要考查了平方根和立方根,解题时注意一个正数的平方根有两个,不要漏解.十九、解答题19.∠1;两直线平行,内错角相等;DE∥CF;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE【分析】过点作,则∠1,同理可以得到∠2,由此即可求解.【详解】解:,解析:∠1;两直线平行,内错角相等;DE∥CF;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE【分析】过点作,则∠1,同理可以得到∠2,由此即可求解.【详解】解:,理由如下:过点作,则∠1(两直线平行,内错角相等),又∵,,∴DE∥CF(平行于同一条直线的两直线平行),∴∠2(两直线平行,内错角相等)∴(等量代换)即∠BCE,故答案为:∠1;两直线平行,内错角相等;DE∥CF;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE.【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.二十、解答题20.(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对解析:(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对应点A、A′的变化写出平移方法即可;(3)根据平移规律逆向写出点P′的坐标;(4)利用△ABC所在的长方形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【详解】解:(1)A′(-3,1);
B′(-2,-2);C′(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)若点P(a,b)是△ABC内部一点,则平移后△A'B'C'内的对应点P'的坐标为:(a-4,b-2);(4)△ABC的面积==2.【点睛】本题考查了利用平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键.二十一、解答题21.(1);(2)2【分析】(1)根据数轴上两点间的距离求出AB之间的距离即为c的值;(2)根据题意及c的值求出m和n的值,再把m,n代入所求代数式进行计算即可.【详解】解:(1)点.分别表示解析:(1);(2)2【分析】(1)根据数轴上两点间的距离求出AB之间的距离即为c的值;(2)根据题意及c的值求出m和n的值,再把m,n代入所求代数式进行计算即可.【详解】解:(1)点.分别表示1,,,;(2),,,,,,,的整数部分是8,.【点睛】此题考查了估算无理数的大小,正确估算及是解题的关键.二十二、解答题22.不同意,理由见解析【分析】先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断.【详解】解:不同意,因为正方形的面积为,解析:不同意,理由见解析【分析】先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断.【详解】解:不同意,因为正方形的面积为,故边长为设长方形宽为,则长为长方形面积∴,解得(负值舍去)长为即长方形的长大于正方形的边长,所以不能裁出符合要求的长方形纸片【点睛】本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.二十三、解答题23.(1)见解析;(2)10°;(3)【分析】(1)过点E作EF∥CD,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明;(2)过点E作HE∥CD,设由(1)得AB∥CD解析:(1)见解析;(2)10°;(3)【分析】(1)过点E作EF∥CD,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明;(2)过点E作HE∥CD,设由(1)得AB∥CD,则AB∥CD∥HE,由平行线的性质,得出再由平分,得出则,则可列出关于x和y的方程,即可求得x,即的度数;(3)过点N作NP∥CD,过点M作QM∥CD,由(1)得AB∥CD,则NP∥CD∥AB∥QM,根据和,得出根据CD∥PN∥QM,DE∥NB,得出即根据NP∥AB,得出再由,得出由AB∥QM,得出因为,代入的式子即可求出.【详解】(1)过点E作EF∥CD,如图,∵EF∥CD,∴∴∵,∴∴EF∥AB,∴CD∥AB;(2)过点E作HE∥CD,如图,设由(1)得AB∥CD,则AB∥CD∥HE,∴∴又∵平分,∴∴即解得:即;(3)过点N作NP∥CD,过点M作QM∥CD,如图,由(1)得AB∥CD,则NP∥CD∥AB∥QM,∵NP∥CD,CD∥QM,∴,又∵,∴∵,∴∴又∵PN∥AB,∴∵,∴又∵AB∥QM,∴∴∴.【点睛】本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系.二十四、解答题24.(1);(2)①;②.【分析】(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论;(2)①根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最解析:(1);(2)①;②.【分析】(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论;(2)①根据角相等和角的和差可得∠EOC=∠BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论;②根据角相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司员工宿舍出租合同标准文本
- 公寓提前续租合同标准文本
- 传媒劳动合同标准文本
- 农村合同承包合同标准文本
- 个人批发合同标准文本
- 体检结算合同标准文本
- 保安业务转让合同标准文本
- 2025企业借款合同范本(合同样式)
- 现代轻奢+非凡之境住宅景观方案设计
- 2025房地产交易合同大全
- 品管圈PDCA案例-提高成人术后疼痛评估与护理规范率医院品质管理成果汇报
- 形势与政策总体国家安全观
- 《QOHAB123-2023高端G系列冷镦钢用热轧盘条》
- 2024年世界职业院校技能大赛中职组“食品药品检验组”赛项考试题库(含答案)
- Unit 5 Humans and nature Lesson 1 A Sea Story 说课 课件-2024-2025学年高中英语北师大版(2019)必修第二册
- 智能运维知识库建设方案设计与实施规划
- 幼儿园办园行为督导评估指标体系表
- 宫颈癌护理查房-5
- 水工建筑物课程设计水闸
- 核心素养下小学道德与法治实践性作业设计探究
- 室外消防管道保温施工方案
评论
0/150
提交评论