四川省绵阳巿三台中学2024届高二数学第一学期期末学业水平测试模拟试题含解析_第1页
四川省绵阳巿三台中学2024届高二数学第一学期期末学业水平测试模拟试题含解析_第2页
四川省绵阳巿三台中学2024届高二数学第一学期期末学业水平测试模拟试题含解析_第3页
四川省绵阳巿三台中学2024届高二数学第一学期期末学业水平测试模拟试题含解析_第4页
四川省绵阳巿三台中学2024届高二数学第一学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省绵阳巿三台中学2024届高二数学第一学期期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题“,”否定是()A., B.,C., D.,2.数列的通项公式是()A. B.C. D.3.如图是一水平放置的青花瓷.它的外形为单叶双曲面,可看成是双曲线的一部分绕其虚轴旋转所形成的曲面,且其外形上下对称.花瓶的最小直径为,瓶口直径为,瓶高为,则该双曲线的虚轴长为()A. B.C. D.454.已知等比数列的公比为正数,且,,则()A.4 B.2C.1 D.5.《镜花缘》是清代文人李汝珍创作的长篇小说,书中有这样一个情节:一座楼阁到处挂满了五彩缤纷的大小灯球,灯球有两种,一种是大灯下缀2个小灯,另一种是大灯下缀4个小灯,大灯共360个,小灯共1200个.若在这座楼阁的灯球中,随机选取一个灯球,则这个灯球是大灯下缀4个小灯的概率为A. B.C. D.6.已知直线l与抛物线交于不同的两点A,B,O为坐标原点,若直线的斜率之积为,则直线l恒过定点()A. B.C. D.7.焦点为的抛物线标准方程是()A. B.C. D.8.下列通项公式中,对应数列是递增数列的是()A B.C. D.9.已知双曲线,则该双曲线的实轴长为()A.1 B.2C. D.10.已知圆:和点,是圆上一点,线段的垂直平分线交于点,则点的轨迹方程是:()A. B.C. D.11.设函数在上可导,则等于()A. B.C. D.以上都不对12.设、是椭圆:的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知空间向量,则使成立的x的值为___________14.已知向量,,若,则______15.已知函数,则曲线在点处的切线方程为___________16.如果点在运动过程中,总满足关系式,记满足此条件的点M的轨迹为C,直线与C交于D,E,已知,则周长的最大值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xOy中,已知抛物线()的焦点F到双曲线的渐近线的距离为1.(1)求抛物线C的方程;(2)若不经过原点O的直线l与抛物线C交于A、B两点,且,求证:直线l过定点.18.(12分)已知圆.(1)过点作圆的切线,求切线的方程;(2)若直线过点且被圆截得的弦长为2,求直线的方程.19.(12分)已知直线l过点A(﹣3,1),且与直线4x﹣3y+t=0垂直(1)求直线l的一般式方程;(2)若直线l与圆C:x2+y2=m相交于点P,Q,且|PQ|=8,求圆C方程20.(12分)已知圆C过两点,,且圆心C在直线上(1)求圆C的方程;(2)过点作圆C的切线,求切线方程21.(12分)奋发学习小组共有3名学生,在某次探究活动中,他们每人上交了1份作业,现各自从这3份作业中随机地取出了一份作业.(1)每个学生恰好取到自己作业的概率是多少?(2)每个学生不都取到自己作业的概率是多少?(3)每个学生取到的都不是自己作业的概率是多少?22.(10分)已知椭圆的一个焦点是,且离心率.(1)求椭圆的方程;(2)设过点的直线交于两点,线段的垂直平分线交轴于点,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据含有量词的命题的否定即可得出结论.【详解】命题为全称命题,则命题的否定为:,.故选:D.2、C【解析】根据数列前几项,归纳猜想出数列的通项公式.【详解】依题意,数列的前几项为:;;;……则其通项公式.故选C.【点睛】本小题主要考查归纳推理,考查数列通项公式的猜想,属于基础题.3、C【解析】设双曲线方程为,,由已知可得,并求得双曲线上一点的坐标,把点的坐标代入双曲线方程,求解,即可得到双曲线的虚轴长【详解】设点是双曲线与截面的一个交点,设双曲线的方程为:,花瓶的最小直径,则,由瓶口直径为,瓶高为,可得,故,解得,该双曲线的虚轴长为故选:4、D【解析】设等比数列的公比为(),则由已知条件列方程组可求出【详解】设等比数列的公比为(),由题意得,且,即,,因为,所以,,故选:D5、B【解析】设大灯下缀2个小灯为个,大灯下缀4个小灯有个,根据题意求得,再由古典概型及其概率的公式,即可求解【详解】设大灯下缀2个小灯为个,大灯下缀4个小灯有个,根据题意可得,解得,则灯球的总数为个,故这个灯球是大灯下缀4个小灯的概率为,故选B【点睛】本题主要考查了古典概型及其概率的计算,其中解答中根据题意列出方程组,求得两种灯球的数量是解答的关键,着重考查了运算与求解能力,属于基础题6、A【解析】设出直线方程,联立抛物线方程,得到,进而得到的值,将直线的斜率之积为,用A,B点坐标表示出来,结合的值即可求得答案.【详解】设直线方程为,联立,整理得:,需满足,即,则,由,得:,所以,即,故,所以直线l为:,当时,,即直线l恒过定点,故选:A.7、D【解析】设抛物线的方程为,根据题意,得到,即可求解.【详解】由题意,设抛物线的方程为,因为抛物线的焦点为,可得,解得,所以抛物线的方程为.故选:D.8、C【解析】根据数列单调性的定义逐项判断即可.【详解】对于A,B选项对应数列是递减数列.对于C选项,,故数列是递增数列.对于D选项,由于.所以数列不是递增数列故选:C.9、B【解析】根据给定的双曲线方程直接计算即可作答.【详解】双曲线的实半轴长,所以该双曲线的实轴长为2.故选:B10、B【解析】先由在线段的垂直平分线上得出,再由题意得出,进而由椭圆定义可求出点的轨迹方程.【详解】如图,因为在线段的垂直平分线上,所以,又点在圆上,所以,因此,点在以、为焦点的椭圆上.其中,,则.从而点的轨迹方程是.故选:B.11、C【解析】根据目标式,结合导数的定义即可得结果.【详解】.故选:C12、C【解析】如下图所示,是底角为的等腰三角形,则有所以,所以又因为,所以,,所以所以答案选C.考点:椭圆的简单几何性质.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】利用空间向量垂直的坐标表示列方程求参数x的值.【详解】由题设,,可得.故答案为:.14、【解析】根据向量平行求得,由此求得.【详解】由于,所以.故答案为:15、【解析】根据导数的几何意义求出切线的斜率,利用点斜式求切线方程.【详解】解:因,所以,又故切线方程为,整理为,故答案为:16、8【解析】根据椭圆定义判断出轨迹,分析条件结合椭圆定义可知当直线x=m过右焦点时,三角形ADE周长最大.【详解】,到定点,的距离和等于常数,点轨迹C为椭圆,且故其方程为,则为左焦点,因为直线与C交于D,E,则,不妨设D在轴上方,E在轴下方,设椭圆右焦点为A',连接DA',EA',因为DA'+EA'≥DE,所以DA+EA+DA'+EA'≥DA+EA+DE,即4a≥DA+EA+DE,所以△ADE的周长,当时取得最大值8,故答案为:8三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)求出双曲线的渐近线方程,由点到直线距离公式可得参数值得抛物线方程;(2)设直线方程为,,直线方程代入抛物线方程后应用韦达定理得,代入可得值,得定点坐标【小问1详解】已知双曲线的一条渐近线方程为,即,抛物线的焦点为,所以,解得(因为),所以抛物线方程为;【小问2详解】由题意设直线方程为,设由得,,,又,所以,所以,直线不过原点,,所以所以直线过定点18、(1);(2)或.【解析】(1)根据直线与圆相切,求得切线的斜率,利用点斜式即可写出切线方程;(2)利用弦长公式,结合已知条件求得直线的斜率,即可求得直线方程.【小问1详解】圆,圆心,半径,又点的坐标满足圆方程,故可得点在圆上,则切线斜率满足,又,故满足题意的切线斜率,则过点的切线方程为,即.【小问2详解】直线过点,若斜率不存在,此时直线的方程为,将其代入可得或,故直线截圆所得弦长为满足题意;若斜率存在时,设直线方程为,则圆心到直线的距离,由弦长公式可得:,解得,也即,解得,则此时直线的方程为:.综上所述,直线的方程为或.19、(1)3x+4y+5=0(2)x2+y2=17【解析】(1)由垂直关系得过直线l的斜率,由点斜式化简即可求解l的一般式方程;(2)结合勾股定理建立弦心距(由点到直线距离公式求解),半弦长,圆半径的基本关系,解出,即可求解圆C的方程【小问1详解】因为直线l与直线4x﹣3y+t=0垂直,所以直线l的斜率为,故直线l的方程为,即3x+4y+5=0,因此直线l的一般式方程为3x+4y+5=0;【小问2详解】圆C:x2+y2=m的圆心为(0,0),半径为,圆心(0,0)到直线l的距离为,则半径满足m=42+12=17,即m=17,所以圆C:x2+y2=1720、(1).(或标准形式)(2)或【解析】(1)根据题意,求出中垂线方程,与直线联立,可得圆心的坐标,求出圆的半径,即可得答案;(2)分切线的斜率存在与不存在两种情况讨论,求出切线的方程,综合可得答案【小问1详解】解:根据题意,因为圆过两点,,设的中点为,则,因为,所以的中垂线方程为,即又因为圆心在直线上,联立,解得,所以圆心,半径,故圆的方程为,【小问2详解】解:当过点P的切线的斜率不存在时,此时直线与圆C相切当过点P的切线斜率k存在时,设切线方程为即(*)由圆心C到切线的距离,可得将代入(*),得切线方程为综上,所求切线方程为或21、(1)(2)(3)【解析】(1)根据列举法列出所有的可能基本事件,进而得出每个学生恰好拿到自己作业的概率;(2)利用对立事件的概念即可求得结果;(3)结合(1)即可得出每个学生拿的都不是自己作业的事件数.【小问1详解】设这三个学生分别为A、B、C,A的作业为a,B的作业为b,C的作业为c,则基本事件为:,则基本事件总数为6,设每个学生恰好拿到自己作业为事件E,事件E包含的事件数为l,所以;小问2详解】设每个学生不都拿到自己作业为事件F,因为事件F的对立事件为E,所以;【小问3详解】设每个学生拿的都不是自己作

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论