新疆昌吉州第二中学2023-2024学年高二上数学期末复习检测模拟试题含解析_第1页
新疆昌吉州第二中学2023-2024学年高二上数学期末复习检测模拟试题含解析_第2页
新疆昌吉州第二中学2023-2024学年高二上数学期末复习检测模拟试题含解析_第3页
新疆昌吉州第二中学2023-2024学年高二上数学期末复习检测模拟试题含解析_第4页
新疆昌吉州第二中学2023-2024学年高二上数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆昌吉州第二中学2023-2024学年高二上数学期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.中秋节吃月饼是我国的传统习俗,若一盘中共有两种月饼,其中5块五仁月饼、6块枣泥月饼,现从盘中任取3块,在取到的都是同种月饼的条件下,都是五仁月饼的概率是()A B.C. D.2.与的等差中项是()A. B.C. D.3.命题“∀x∈[1,2],x2-a≤0”为真命题的一个充分不必要条件是()A.a≥4 B.a≤4C.a≥5 D.a≤54.已知函数,则()A.3 B.C. D.5.甲、乙两组数的数据如茎叶图所示,则甲、乙的平均数、方差、极差及中位数相同的是()A.极差 B.方差C.平均数 D.中位数6.太极图被称为“中华第一图”,闪烁着中华文明进程的光辉,它是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美.定义:能够将圆O的周长和面积同时等分成两个部分的函数称为圆O的一个“太极函数”,设圆O:,则下列说法中正确的是()①函数是圆O的一个太极函数②圆O的所有非常数函数的太极函数都不能为偶函数③函数是圆O的一个太极函数④函数的图象关于原点对称是为圆O的太极函数的充要条件A.①② B.①③C.②③ D.③④7.已知椭圆的右焦点为,则正数的值是()A.3 B.4C.9 D.218.已知是抛物线上的一个动点,是圆上的一个动点,是一个定点,则的最小值为A. B.C. D.9.已知椭圆的左、右焦点分别为,点是椭圆上的一点,点是线段的中点,为坐标原点,若,则()A.3 B.4C.6 D.1110.在x轴与y轴上截距分别为,2的直线的倾斜角为()A.45° B.135°C.90° D.180°11.已知等差数列{an}中,a4+a9=8,则S12=()A.96 B.48C.36 D.2412.已知圆的方程为,则实数m的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.从双曲线上一点作轴的垂线,垂足为,则线段中点的轨迹方程为___________.14.在棱长为2的正方体中,点P是直线上的一个动点,点Q在平面上,则的最小值为________.15.已知抛物线的焦点为F,A为抛物线C上一点.以F为圆心,FA为半径的圆交抛物线C的准线于B,D两点,A,F,B三点共线,且,则______16.记为等差数列{}的前n项和,若,,则=_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知:,椭圆,双曲线.(1)若的离心率为,求的离心率;(2)当时,过点的直线与的另一个交点为,与的另一个交点为,若恰好是的中点,求直线的方程.18.(12分)在如图所示的几何体中,四边形是正方形,四边形是梯形,,,平面平面,且(1)求证:平面;(2)求平面与平面夹角的余弦值19.(12分)已知椭圆与椭圆有共同的焦点,且椭圆经过点.(1)求椭圆的标准方程;(2)设为椭圆的左焦点,为椭圆上任意一点,为坐标原点,求的最小值.20.(12分)已知函数.(1)当时,求曲线在点处的切线方程;(2)求的单调区间;21.(12分)已知数列满足,,,.从①,②这两个条件中任选一个填在横线上,并完成下面问题.(1)写出、,并求数列的通项公式;(2)求数列的前项和.22.(10分)如图,ABCD是边长为2的正方形,DE⊥平面ABCD,AF∥DE,DE=2AF=2(1)证明:AC∥平面BEF;(2)求点C到平面BEF的距离

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分别求出取到3块月饼都是同种月饼和取到3块月饼都是五仁月饼的种数,再根据概率公式即可得解.【详解】解:由题意可得,取到3块月饼都是同种月饼有种情况,取到3块月饼都是五仁月饼有种情况,所以在取到的都是同种月饼的条件下,都是五仁月饼的概率是.故选:C.2、A【解析】代入等差中项公式即可解决.【详解】与的等差中项是故选:A3、C【解析】先要找出命题为真命题的充要条件,从集合的角度充分不必要条件应为的真子集,由选择项不难得出答案【详解】命题“∀x∈[1,2],x2-a≤0”为真命题,可化为∀x∈[1,2],恒成立即只需,即命题“∀x∈[1,2],x2-a≤0”为真命题的的充要条件为,而要找的一个充分不必要条件即为集合的真子集,由选择项可知C符合题意.故选:C4、B【解析】由导数运算法则求出导发函数,然后可得导数值【详解】由题意,所以故选:B5、C【解析】根据茎叶图依次计算甲和乙的平均数、方差、中位数和极差即可得到结果.【详解】甲的平均数为:;乙的平均数为:;甲和乙的平均数相同;甲的方差为:;乙的方差为:;甲和乙的方差不相同;甲的极差为:;乙的极差为:;甲和乙的极差不相同;甲的中位数为:;乙的中位数为:;甲和乙的中位数不相同.故选:C.6、B【解析】①③可以通过分析奇偶性和结合图象证明出符合要求,②④可以举出反例.【详解】是奇函数,且与圆O的两交点坐标为,能够将圆O的周长和面积同时等分为两个部分,故符合题意,①正确;同理函数是圆O的一个太极函数,③正确;例如,是偶函数,也能将将圆O的周长和面积同时等分为两个部分,故②错误;函数的图象关于原点对称不是为圆O的太极函数的充要条件,例如为奇函数,但不满足将圆O的周长和面积同时等分为两个部分,所以④错误;故选:B7、A【解析】由直接可得.【详解】由题知,所以,因为,所以.故选:A8、A【解析】恰好为抛物线的焦点,等于到准线的距离,要想最小,过圆心作抛物线的准线的垂线交抛物线于点,交圆于,最小值等于圆心到准线的距离减去半径4-1=.考点:1.抛物线的定义;2.圆中的最值问题;9、A【解析】利用椭圆的定义可得,再结合条件即求.【详解】由椭圆的定义可知,因为,所以,因为点分别是线段,的中点,所以是的中位线,所以.故选:A.10、A【解析】按照斜率公式计算斜率,即可求得倾斜角.【详解】由题意直线过,设直线斜率为,倾斜角为,则,故.故选:A.11、B【解析】利用等差数列的性质求解即可.【详解】解:由等差数列的性质得.故选:B12、C【解析】根据可求得结果.【详解】因为表示圆,所以,解得.故选:C【点睛】关键点点睛:掌握方程表示圆的条件是解题关键.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】根据题意,设,进而根据中点坐标公式及点P已知双曲线上求得答案.【详解】由题意,设,则,则,即,因为,则,即的轨迹方程为.14、【解析】数形结合分析出的最小值为点到平面的距离,然后利用等体积法求出距离即可.【详解】因为,且平面,平面,所以平面,所以的最小值为点到平面的距离,设到平面的距离为,则,所以,即,解得,故答案为:.15、2【解析】求得抛物线的焦点和准线方程,由,,三点共线,推得,由三角形的中位线性质可得到准线的距离,可得的值【详解】抛物线的焦点为,,准线方程为,因为,,三点共线,可得为圆的直径,如图示:设准线交x轴于E,所以,则,由抛物线的定义可得,又是的中点,所以到准线的距离为,故答案为:216、18【解析】根据等差数列通项和前n项和公式即可得到结果.【详解】设等差数列的公差为,由,得,解得,所以故答案为:18三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)有椭圆的离心率可以得到,的关系,在双曲线中方程是非标准的方程,注意套公式时容易出错.(2)联立方程分别解得P,Q两点的横坐标,利用中点坐标公式即可解得斜率值.【小问1详解】椭圆的离心率为,,在双曲线中因为,.【小问2详解】当时,椭圆,双曲线.当过点的直线斜率不存在时,点P,Q恰好重合,坐标为,所以不符合条件;当斜率存在时,设直线方程为,,联立方程得,利用韦达定理,所以;同理联立方程,韦达定理得,所以由于是的中点,所以,所以,即,化简得,所以直线方程为或.18、(1)证明见解析(2)【解析】(1)先利用正方形和梯形的性质证明线面平行,然后再根据线面平行证明面面平行即可(2)根据题意建立空间直角坐标系,写出相关点的坐标和相关的向量,然后分别求出平面与平面的一个法向量,最后求出平面与平面夹角的余弦值【小问1详解】四边形是正方形,可得:又平面,平面则有:平面四边形是梯形,可得:又平面,平面则有:平面又故平面平面【小问2详解】依题意知两两垂直,故以为原点,所在的直线分别为轴、轴、轴,建立如图所示的空间直角坐标系.则有:,,,可得:,,设平面的一个法向量,则有:取,可得:设平面的一个法向量,则有:取,可得:设平面与平面的夹角为,则故平面与平面夹角的余弦值为19、(1)(2)【解析】(1)设椭圆的方程为,将点的坐标代入椭圆的方程,求出的值,即可得出椭圆的方程;(2)设点,则,且,利用平面向量数量积的坐标运算结合二次函数的基本性质可求得的最小值.【小问1详解】(1)由题可设椭圆的方程为,由椭圆经过点,可得,解得或(舍).所以,椭圆的标准方程为.【小问2详解】解:易知,设点,则,且,,,则,当且仅当时,等号成立,故的最小值为.20、(1)(2)详见解析【解析】(1)分别求得和,从而得到切线方程;(2)求导后,令求得两根,分别在、和三种情况下根据导函数的正负得到函数的单调区间.【详解】(1),,,,又,在处的切线方程为.(2),令,解得:,.①当时,若和时,;若时,;的单调递增区间为,;单调递减区间为;②当时,在上恒成立,的单调递增区间为,无单调递减区间;③当时,若和时,;若时,;的单调递增区间为,;单调递减区间为;综上所述:当时,的单调递增区间为,;单调递减区间为;当时,的单调递增区间为,无单调递减区间;当时,的单调递增区间为,;单调递减区间为.【点睛】本题考查利用导数的几何意义求解曲线在某一点处的切线方程、利用导数讨论含参数函数的单调区间的问题,属于常考题型.21、(1)条件选择见解析,,,(2)【解析】(1)选①,推导出数列为等比数列,确定该数列的首项和公比,可求得,并可求得、;选②,推导出数列是等比数列,确定该数列的首项和公比,可求得,可求得,由此可得出、;(2)求得,,分为偶数、奇数两种情况讨论,结合并项求和法以及等比数列求和公式可求得.【小问1详解】解:若选①,,且,故数列是首项为,公比为的等比数列,,故;若选②,,所以,,且,故数列是以为首项,以为公比的等比数列,所以,,故,所以,,故,.【小问2详解】解:由(1)可知,则,所以,.当为偶数时,;当为奇数时,.综上所述,.22、(1)证明见解析(2)【解析】(1)建立空间直角坐标系,进而求出平面BEF的法向量,然后证明线面平行;(2)算出在向量方向上的投影,进而求得答案.【小问1详解】因为DE⊥平面ABCD,DA、DC平面A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论