天津市大白高中2024届数学高二上期末复习检测模拟试题含解析_第1页
天津市大白高中2024届数学高二上期末复习检测模拟试题含解析_第2页
天津市大白高中2024届数学高二上期末复习检测模拟试题含解析_第3页
天津市大白高中2024届数学高二上期末复习检测模拟试题含解析_第4页
天津市大白高中2024届数学高二上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津市大白高中2024届数学高二上期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某校开展研学活动时进行劳动技能比赛,通过初选,选出共6名同学进行决赛,决出第1名到第6名的名次(没有并列名次),和去询问成绩,回答者对说“很遗㙳,你和都末拿到冠军;对说“你当然不是最差的”.试从这个回答中分析这6人的名次排列顺序可能出现的结果有()A.720种 B.600种C.480种 D.384种2.下列结论中正确的有()A.若,则 B.若,则C.若,则 D.若,则3.已知圆与直线至少有一个公共点,则的取值范围为()A. B.C. D.4.已知函数的图象过点,令.记数列的前n项和为,则()A. B.C. D.5.已知等差数列满足,,则()A. B.C. D.6.已知数列为等比数列,,则的值为()A. B.C. D.27.“五一”期间,甲、乙、丙三个大学生外出旅游,已知一人去北京,一人去两安,一人去云南.回来后,三人对去向作了如下陈述:甲:“我去了北京,乙去了西安.”乙:“甲去了西安,丙去了北京.”丙:“甲去了云南,乙去了北京.”事实是甲、乙、丙三人陈述都只对了一半(关于去向的地点仅对一个).根据以上信息,可判断下面说法中正确的是()A.甲去了西安 B.乙去了北京C.丙去了西安 D.甲去了云南8.下列命题中是真命题的是()A.“”是“”的充分非必要条件B.“”是“”的必要非充分条件C.在中“”是“”的充分非必要条件D.“”是“”的充要条件9.已知双曲线=1的一条渐近线方程为x-4y=0,其虚轴长为()A.16 B.8C.2 D.110.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件11.如图,M为OA的中点,以为基底,,则实数组等于()A. B.C. D.12.数列,,,,…,是其第()项A.17 B.18C.19 D.20二、填空题:本题共4小题,每小题5分,共20分。13.已知为椭圆上的一点,,分别为圆和圆上的点,则的最小值为______14.如图,将一个正方体沿相邻三个面的对角线截出一个棱锥,若该棱锥的体积为,则该正方体的体对角线长为___________.15.已知,是椭圆:的两个焦点,点在上,则的最大值为________16.如图,在三棱锥P–ABC的平面展开图中,AC=1,,AB⊥AC,AB⊥AD,∠CAE=30°,则cos∠FCB=______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)平行六面体,(1)若,,,,,,求长;(2)若以顶点A为端点的三条棱长均为2,且它们彼此的夹角都是60°,则AC与所成角的余弦值18.(12分)已知抛物线上的点M到焦点F的距离为5,点M到x轴的距离为(1)求抛物线C的方程;(2)若抛物线C的准线l与x轴交于点Q,过点Q作直线交抛物线C于A,B两点,设直线FA,FB的斜率分别为,.求的值19.(12分)如图,在三棱柱中,四边形为矩形,,,点E为棱的中点,.(1)求证:平面平面;(2)求平面AEB与平面夹角的余弦值.20.(12分)已知圆的圆心在直线,且与直线相切于点.(1)求圆的方程;(2)直线过点且与圆相交,所得弦长为,求直线的方程.21.(12分)已知函数,且a0(1)当a=1时,求函数f(x)的单调区间;(2)记函数,若函数有两个零点,①求实数a的取值范围;②证明:22.(10分)已知椭圆的一个焦点坐标为,离心率为(1)求椭圆C的标准方程;(2)O为坐标原点,点P在椭圆C上,若的面积为,求点P的坐标

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】不是第一名且不是最后一名,的限制最多,先排有4种情况,再排,也有4种情况,余下的问题是4个元素在4个位置全排列,根据分步计数原理求解即可【详解】由题意,不是第一名且不是最后一名,的限制最多,故先排,有4种情况,再排,也有4种情况,余下4人有种情况,利用分步相乘计数原理知有种情况故选:D.2、D【解析】根据基本初等函数的导数和运算法则分别计算函数的导数,即可判断选项.【详解】A.若,则,故A错误;B.若,则,故B错误;C.若,则,故C错误;D.若,则,故D正确.故选:D3、C【解析】利用点到直线距离公式求出圆心到直线的距离范围,从而求出的取值范围.【详解】圆心到直线的距离,当且仅当时等号成立,故只需即可.故选:C4、D【解析】由已知条件推导出,.由此利用裂项求和法能求出【详解】解:由,可得,解得,则.∴,故选:【点睛】本题考查了函数的性质、数列的“裂项求和”,考查了推理能力与计算能力,属于中档题5、D【解析】根据等差数列的通项公式求出公差,再结合即可得的值.【详解】因为是等差数列,设公差为,所以,即,所以,所以,故选:D.6、B【解析】根据等比数列的性质计算.【详解】由等比数列的性质可知,且等比数列奇数项的符号相同,所以,即.故选:B7、D【解析】根据题意,先假设甲去了北京正确,则可分析其他人的陈述是否符合题意,再假设乙去西安正确,分析其他人的陈述是否符合题意,即可得答案.【详解】由题意得,甲、乙、丙三人的陈述都只对了一半,假设甲去了北京正确,对于甲的陈述:则乙去西安错误,则乙去了云南;对于乙的陈述:甲去了西安错误,则丙去了北京正确;对于丙的陈述:甲去了云南错误,乙去了北京也错误,故假设错误.假设乙去了西安正确,对于甲的陈述:则甲去了北京错误,则甲去了云南;对于乙的陈述:甲去了西安错误,则丙去了北京正确;对于丙的陈述:甲去了云南正确,乙去了北京错误,此种假设满足题意,故甲去了云南.故选:D8、B【解析】根据充分条件、必要条件、充要条件的定义依次判断.【详解】当时,,非充分,故A错.当不能推出,所以非充分,,所以是必要条件,故B正确.当在中,,反之,故为充要条件,故C错;当时,,,,充分条件,因为,当时成立,非必要条件,故D错.故选:B.9、C【解析】根据双曲线的渐近线方程的特点,结合虚轴长的定义进行求解即可.【详解】因为双曲线=1的一条渐近线方程为x-4y=0,所以,因此该双曲线的虚轴长为,故选:C10、B【解析】根据充分条件和必要条件的概念即可判断.【详解】∵,∴“”是“”的必要不充分条件.故选:B.11、B【解析】根据空间向量减法的几何意义进行求解即可.【详解】,所以实数组故选:B12、D【解析】根据题意,分析归纳可得该数列可以写成,,,……,,可得该数列的通项公式,分析可得答案.【详解】解:根据题意,数列,,,,…,,可写成,,,……,,对于,即,为该数列的第20项;故选:D.【点睛】此题考查了由数列的项归纳出数列的通项公式,考查归纳能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、8【解析】根据椭圆的定义、点到圆上距离的最小值,即可得到答案;【详解】设为椭圆的左右焦点,则,等号成立,当共线,共线,的最小值为,故答案为:14、.【解析】先根据棱锥的体积求出正方体的棱长,进而求出正方体的体对角线长.【详解】如图,连接,设正方体棱长为,则.所以,体对角线.故答案为:.15、9【解析】根据椭圆的定义可得,结合基本不等式即可求得的最大值.【详解】∵在椭圆上∴∴根据基本不等式可得,即,当且仅当时取等号.故答案为:9.16、【解析】在中,利用余弦定理可求得,可得出,利用勾股定理计算出、,可得出,然后在中利用余弦定理可求得的值.【详解】,,,由勾股定理得,同理得,,在中,,,,由余弦定理得,,在中,,,,由余弦定理得.故答案为:.【点睛】本题考查利用余弦定理解三角形,考查计算能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由,可得,再利用数量积运算性质即可得出;(2)以为一组基底,设与所成的角为,由求解.【小问1详解】,,,,∴,;【小问2详解】∵,,∴,∵,∴,∵=8,∴,设与所成的角为,则.18、(1)(2)0【解析】(1)由焦半径公式求C的方程;(2)设直线AB方程,与抛物线方程联立,由韦达定理表示出,,代入中化简求值即可.小问1详解】设点,则,所以,解得因为,所以.所以抛物线C的方程为【小问2详解】由题知,,,直线AB的斜率必存在,且不为零设,,直线AB的斜率为k,则直线AB的方程为,由,得所以,,且,即所以所以的值为019、(1)证明见解析(2)【解析】(1)根据矩形及勾股定理的逆定理可得线面垂直的条件,再由平面,即可证明面面垂直;(2)建立空间直角坐标后,求出相关法向量,再用夹角公式即可.【小问1详解】证明:由三棱柱的性质及可知四边形为菱形又∵∴为等边三角形∴,又∵,∴,∴又∵四边形为矩形∴又∵∴平面又∵平面∴平面平面.【小问2详解】以B为原点BE为x轴,为y轴,BA为E轴建立空间直角坐标系,如图所示,,,,,,设平面的法向量为.则即∴,又∵平面ABE的法向量为,∴,∴平面ABE与平面夹角的余弦值为.20、(1)(2)或【解析】(1)分析可知圆心在直线上,联立两直线方程,可得出圆心的坐标,计算出圆的半径,即可得出圆的方程;(2)利用勾股定理求出圆心到直线的距离,然后对直线的斜率是否存在进行分类讨论,设出直线的方程,利用点到直线的距离公式求出参数,即可得出直线的方程.【小问1详解】解:过点且与直线垂直的直线的方程为,由题意可知,圆心即为直线与直线的交点,联立,解得,故圆的半径为,因此,圆的方程为.【小问2详解】解:由勾股定理可知,圆心到直线的距离为.当直线的斜率不存在时,直线的方程为,圆心到直线的距离为,满足条件;当直线的斜率存在时,设直线的方程为,即,由题意可得,解得,此时,直线的方程为,即.综上所述,直线的方程为或.21、(1)函数f(x)在区间(0,+)上单调递减(2)①;②证明见解析【解析】(1)求导,求解可得导函数恒小于等于0,即得证;(2)①分析函数的单调性,由有两个实数根可求解;②由(1)得2lnxx−,再利用其放缩可得,由此有,问题得证.【小问1详解】当a=1时,函数因为所以函数f(x)在区间(0,+)上单调递减;【小问2详解】(i)由已知可得方程有两个实数根记,则.当时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论