版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆哈密石油中学2023年高二数学第一学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知实数x,y满足约束条件,则的最大值为()A. B.0C.3 D.52.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为A. B.C.2 D.3.已知等差数列,,则公差d等于()A. B.C.3 D.-34.已知点,则直线的倾斜角为()A. B.C. D.5.如图,在正方体中,()A. B.C. D.6.某市2016年至2020年新能源汽车年销量y(单位:百台)与年份代号x的数据如下表:年份20162017201820192020年份代号x01234年销量y1015m3035若根据表中的数据用最小二乘法求得y关于x的回归直线方程为,则表中m的值为()A.22 B.20C.30 D.32.57.在等差数列中,若,则的值为()A. B.C. D.8.《九章算术》中,将四个面都为直角三角形的三棱锥称为鳖臑(nào).如图所示的三棱锥为一鳖臑,且平面,平面,若,,,则()A. B.C. D.9.已知直线与平行,则a的值为()A.1 B.﹣2C. D.1或﹣210.若,则x的值为()A.4 B.6C.4或6 D.811.已知直线与直线,若,则()A.6 B.C.2 D.12.已知直线和互相平行,则实数()A. B.C.或 D.或二、填空题:本题共4小题,每小题5分,共20分。13.若圆被直线平分,则值为__________14.将全体正整数排成一个三角形数阵:按照以上排列的规律,第行从左向右的第2个数为____________.15.在梯形中,,,.将梯形绕所在的直线旋转一周而形成的曲面所围成的几何体的体积为______.16.已知数列是递增等比数列,,则数列的前项和等于.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在①;②,这两个条件中任选一个,补充在下面问题中,然后解答补充完整的题目.在中,内角A,B,C的对边分别为a,b,c,设的面积为S,已知_________.(1)求的值;(2)若,求值.注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)如图,在三棱柱中,侧棱垂直于底面,分别是的中点(1)求证:平面平面;(2)求证:平面;(3)求三棱锥体积19.(12分)已知函数.(1)求函数的单调区间;(2)当时,求函数的值域.20.(12分)求满足下列条件的圆锥曲线方程的标准方程.(1)经过点,两点的椭圆;(2)与双曲线-=1有相同的渐近线且经过点的双曲线.21.(12分)年月初,浙江杭州、宁波、绍兴三地相继爆发新冠肺炎疫情.疫情期间口罩需求量大增,某医疗器械公司开始生产口罩,并且对所生产口罩的质量按指标测试分数进行划分,其中分数不小于的为合格品,否则为不合格品,现随机抽取件口罩进行检测,其结果如表:测试分数数量(1)根据表中数据,估计该公司生产口罩的不合格率;(2)若用分层抽样的方式按是否合格从所生产口罩中抽取件,再从这件口罩中随机抽取件,求这件口罩全是合格品的概率22.(10分)在平面直角坐标系xOy中,O为坐标原点,已知直线:mx-(2-m)y-4=0与直线h:x+y-2=0的交点M在第一三象限的角平分线上.(1)求实数m的值;(2)若点P在直线l上且,求点P的坐标.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先画出可行域,由,得,作出直线,向上平移过点A时,取得最大值,求出点A的坐标,代入可求得结果【详解】不等式组表示的可行域,如图所示由,得,作出直线,向上平移过点A时,取得最大值,由,得,即,所以的最大值为,故选:D2、A【解析】准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率【详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心,又点在圆上,,即,故选A【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来3、B【解析】根据题意,利用公式,即可求解.【详解】由题意,等差数列,,可得等差数列的公差.故选:B.4、A【解析】由两点坐标,求出直线的斜率,利用,结合倾斜角的范围即可求解.【详解】设直线AB的倾斜角为,因为,所以直线AB的斜率,即,因为,所以.故选:A5、B【解析】根据正方体的性质,结合向量加减法的几何意义有,即可知所表示的向量.【详解】∵,而,∴,故选:B6、B【解析】求出样本中心的横坐标,代入回归直线方程,求出样本中心的纵坐标,然后求解即可【详解】因为,代入回归直线方程为,所以,,于是得,解得故选:B7、C【解析】利用等差数列性质可求得,由可求得结果.【详解】由等差数列性质知:,,解得:;又,.故选:C.8、A【解析】根据平面,平面求解.【详解】因为平面,平面,所以,又,,,所以,所以,故选:A9、A【解析】根据题意可得,解之即可得解.【详解】解:因为直线与平行,所以,解得.故选:A.10、C【解析】根据组合数的性质可求解.【详解】,或,即或.故选:C11、A【解析】根据两直线垂直的充要条件得到方程,解得即可;【详解】解:因为直线与直线,且,所以,解得;故选:A12、C【解析】根据题意,结合两直线的平行,得到且,即可求解.【详解】由题意,直线和互相平行,可得且,即且,解得或.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、;【解析】求出圆的圆心坐标,代入直线方程求解即可【详解】解:的圆心圆被直线平分,可知直线经过圆的圆心,可得解得;故答案为:1【点睛】本题考查直线与圆的位置关系的应用,属于基础题14、【解析】通过观察、分析、归纳,找出规律运算求解即可【详解】前行共有正整数个,即个,因此第行第个数是全体正整数中第个,即为故答案为:15、##【解析】画出几何体的直观图,利用已知条件,求解几何体的体积即可【详解】梯形ABCD:由题意可知空间几何体的直观图如图:旋转体是底面半径为1,高为2的圆柱,挖去一个相同底面高为1的圆锥,几何体的体积为:故答案为:16、【解析】由题意,,解得或者,而数列是递增的等比数列,所以,即,所以,因而数列的前项和,故答案为.考点:1.等比数列的性质;2.等比数列的前项和公式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、条件选择见解析;(1);(2).【解析】(1)若选择①,先利用正弦定理进行边角互化,再结合正余弦的和差角公式化简可得,得出;若选择②,利用余弦定理及面积公式可得,得;(2)由(1)可知,由及得,,再根据余弦定理求解的值.【详解】解析:(1)选择条件①.,,得,选择条件②,由余弦定理及三角形的面积公式可得:,得.(2)由得,∵,,∴,解得.由余弦定理得:.【点睛】本题考查解三角形,难度一般.解答的关键在于根据题目中边角关系,运用正弦定理进行边角互化、再根据两角和与差的正弦公式进行化简是关键.一般地,当等式中含有a,b,c的关系式,且全为二次时,可利用余弦定理进行化简;当含有内角的正弦值及边的关系,且为一次式时,可考虑采用正弦定理进行边角互化.18、(1)证明见解析;(2)证明见解析;(3)【解析】(1)由直线与平面垂直证明直线与平行的垂直;(2)证明直线与平面平行;(3)求三棱锥的体积就用体积公式.(1)在三棱柱中,底面ABC,所以AB,又因为AB⊥BC,所以AB⊥平面,因为AB平面,所以平面平面.(2)取AB中点G,连结EG,FG,因为E,F分别是、的中点,所以FG∥AC,且FG=AC,因为AC∥,且AC=,所以FG∥,且FG=,所以四边形为平行四边形,所以EG,又因为EG平面ABE,平面ABE,所以平面.(3)因为=AC=2,BC=1,AB⊥BC,所以AB=,所以三棱锥的体积为:==.考点:本小题主要考查直线与直线、直线与平面、平面与平面的垂直与平行的证明;考查几何体的体积的求解等基础知识,考查同学们的空间想象能力、推理论证能力、运算求解能力、逻辑推理能力,考查数形结合思想、化归与转化思想19、(1)单调递增区间(−∞,−1)和(4,+∞),单调递减区间(−1,4)(2)【解析】(1)求出,令,由导数的正负即可得到函数f(x)的单调递增区间和递减区间;(2)求出函数在区间中的单调性,求出极大值和极小值以及区间端点的函数值,比较大小即可得到答案【小问1详解】由函数得,令,解得x<−1或x>4,;令,解得−1<x<4,故函数f(x)的单调递增区间为(−∞,−1)和(4,+∞),单调递减区间为(−1,4);【小问2详解】由(1)可知,当x∈[−3,−1)时,,f(x)单调递增,当x∈(−1,4)时,,f(x)单调递减,当x∈(4,6]时,,f(x)单调递增,所以当x=−1时,函数f(x)取得极大值f(−1)=,当x=4时,函数f(x)取得极小值f(4)=,又,所以当x∈[−3,6]时,函数f(x)的值域为20、(1);(2)【解析】(1)由题意可得,,从而可求出椭圆的标准方程,(2)由题意设双曲线的共渐近线方程为,再将的坐标代入方程可求出的值,从而可求出双曲线方程【小问1详解】因为,所以P、Q分别是椭圆长轴和短轴上的端点,且椭圆的焦点在x轴上,所以,所以椭圆的标准方程为.【小问2详解】设与双曲线共渐近线的方程为,代入点,解得m=2,所以双曲线的标准方程为21、(1);(2).【解析】(1)由题意知分数小于的产品为不合格品,故有件,一共有件口罩,即可求出口罩的不合格率.(2)先利用分层抽样确定抽取的件口罩中合格产品和不合格产品的数量分别为件和件,再利用古典概型把所有基本事件种都列举出来,在判断件口罩全是合格品的事件有种情况,即可得到答案.【小问1详解】在抽取的件产品中,不合格的口罩有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《平行四边形的面积》(教学实录)-2024-2025学年五年级上册数学西师大版
- 达州2024年四川达州中医药职业学院招聘员额制人员23人历年参考题库(频考版)含答案解析
- 辽宁2024年辽宁省肿瘤医院招聘20人历年参考题库(频考版)含答案解析
- 唐山工业职业技术学院《计算机基础及Python程序设计》2023-2024学年第一学期期末试卷
- 泰州学院《学校团体心理辅导》2023-2024学年第一学期期末试卷
- 中国退火连续镀锡机项目投资可行性研究报告
- 2023年节水设备项目融资渠道探索
- 纸绳编织剑杆织机行业深度研究报告
- 2023年电动护理床项目融资计划书
- Unit 1 Hello Again Lesson 5 Where Is Danny?(教学实录) -2023-2024学年冀教版(三起)英语四年级下册
- 一汽大众新员工三级安全教育(入厂级)
- 常见繁体字的简化表 香港人简体字教学
- 塑料模具肥皂盒设计说明书
- 最新X公司事业部建设规划方案
- 十一学校行动纲要
- 穿越河流工程定向钻专项施工方案
- 社会主义新农村建设建筑废料利用探究
- 唯一住房补贴申请书(共2页)
- 《质量守恒定律》评课稿
- 数据中心IDC项目建议书
- 中医养生脾胃为先PPT文档
评论
0/150
提交评论