版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省宁波市金兰教育合作组织2023年数学高二上期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知x>0、y>0,且1,若恒成立,则实数m的取值范围为()A.(1,9) B.(9,1)C.[9,1] D.(∞,1)∪(9,+∞)2.曲线与曲线()的()A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等3.f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f(x)g(x)+f(x)g(x)<0且f(﹣1)=0则不等式f(x)g(x)<0的解集为A.(﹣1,0)∪(1,+∞) B.(﹣1,0)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)∪(0,1)4.如图,在三棱柱中,平面,,,分别是,中点,在线段上,则与平面的位置关系是()A.垂直 B.平行C.相交但不垂直 D.要依点的位置而定5.已知点是抛物线上的一点,F是抛物线的焦点,则点M到F的距离等于()A.6 B.5C.4 D.26.在矩形中,,在该矩形内任取一点M,则事件“”发生的概率为()A. B.C. D.7.已知实数a,b满足,则下列不等式中恒成立的是()A. B.C. D.8.曲线在点处的切线方程为()A. B.C. D.9.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.即不充分也不必要条件10.已知椭圆的左、右焦点分别为、,点A是椭圆短轴的一个顶点,且,则椭圆的离心率()A. B.C. D.11.若圆上至少有三个点到直线的距离为1,则半径的取值范围是()A. B.C. D.12.已知函数是区间上的可导函数,且导函数为,则“对任意的,”是“在上为增函数”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,,若,,使得,则实数a的取值范围是______14.直线l过抛物线的焦点F,且l与该抛物线交于不同的两点,.若,则弦AB的长是____15.如图,把正方形纸片沿对角线折成直二面角,则折纸后异面直线,所成的角为___________.16.以双曲线的右焦点为圆心,为半径的圆与的一条渐近线交于两点,若,则双曲线的离心率为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列为等差数列,是公比为2的等比数列,且满足(1)求数列和的通项公式;(2)令求数列的前n项和;18.(12分)已知椭圆C:的长轴长为,P是椭圆上异于顶点的一个动点,O为坐标原点,A为椭圆C的上顶点,Q为PA的中点,且直线PA与直线OQ的斜率之积恒为-2.(1)求椭圆C的方程;(2)若斜率为k且过上焦点F的直线l与椭圆C相交于M,N两点,当点M,N到y轴距离之和最大时,求直线l的方程.19.(12分)已知三棱柱的侧棱垂直于底面,,,,,分别是,的中点.(Ⅰ)证明:平面;(Ⅱ)求二面角的余弦值.20.(12分)甲、乙两人参加普法知识竞赛,共有5题,选择题(1)甲、乙两人中有一个抽到选择题(2)甲、乙两人中至少有一人抽到选择题21.(12分)已知等差数列的前n项和为Sn,S9=81,,求:(1)Sn;(2)若S3、、Sk成等比数列,求k22.(10分)已知抛物线E:y2=8x(1)求抛物线的焦点及准线方程;(2)过点P(-1,1)的直线l1与抛物线E只有一个公共点,求直线l1的方程;(3)过点M(2,3)的直线l2与抛物线E交于点A,B.若弦AB的中点为M,求直线l2的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】应用基本不等式“1”的代换求的最小值,注意等号成立条件,再根据题设不等式恒成立有,解一元二次不等式求解集即可.【详解】由题设,,当且仅当时等号成立,∴要使恒成立,只需,故,∴.故选:B.2、D【解析】分别求出两椭圆的长轴长、短轴长、离心率、焦距,即可判断.【详解】曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为;曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为.对照选项可知:焦距相等.故选:D.3、A【解析】构造函数h(x)=f(x)g(x),由已知得当x<0时,h(x)<0,所以函数y=h(x)在(﹣∞,0)单调递减,又因为f(x),g(x)分别是定义在R上的奇函数和偶函数,得函数y=h(x)为R上的奇函数,所以函数y=h(x)在(0,+∞)单调递减,得到f(x)g(x)<0不等式的解集【详解】设h(x)=f(x)g(x),因为当x<0时,f(x)g(x)+f(x)g(x)<0,所以当x<0时,h(x)<0,所以函数y=h(x)在(﹣∞,0)单调递减,又因为f(x),g(x)分别是定义在R上的奇函数和偶函数,所以函数y=h(x)为R上的奇函数,所以函数y=h(x)在(0,+∞)单调递减,因为f(﹣1)=0,所以函数y=h(x)的大致图象如下:所以等式f(x)g(x)<0的解集为(﹣1,0)∪(1,+∞)故选A【点睛】本题考查导数乘法法则、导数的符号与函数单调性的关系;奇函数的单调性在对称区间上一致,属于中档题4、B【解析】构造三角形,先证∥平面,同理得∥平面,再证平面∥平面即可.【详解】连接,,.因为在直三棱柱中,M,N分别是,AB的中点,所以∥.因为平面内,平面,所以∥平面.同理可得AM∥平面.又因为,平面,平面,所以平面∥平面.又因为P点在线段上,所以∥平面.故选:B.5、B【解析】先求出,再利用焦半径公式即可获解.【详解】由题意,,解得所以故选:B.6、D【解析】利用几何概型的概率公式,转化为面积比直接求解.【详解】以AB为直径作圆,当点M在圆外时,.所以事件“”发生的概率为.故选:D7、D【解析】利用特殊值排除错误选项,利用函数单调性证明正确选项.【详解】时,,但,所以A选项错误.时,,但,所以B选项错误.时,,但,所以C选项错误.在上递增,所以,即D选项正确.故选:D8、A【解析】利用切点和斜率求得切线方程.【详解】由,有曲线在点处的切线方程为,整理为故选:A9、D【解析】根据充分条件、必要条件的判定方法,结合不等式的性质,即可求解.【详解】由,可得,即,当时,,但的符号不确定,所以充分性不成立;反之当时,也不一定成立,所以必要性不成立,所以是的即不充分也不必要条件.故选:D.10、D【解析】依题意,不妨设点A的坐标为,在中,由余弦定理得,再根据离心率公式计算即可.【详解】设椭圆的焦距为,则椭圆的左焦点的坐标为,右焦点的坐标为,依题意,不妨设点A的坐标为,在中,由余弦定理得:,,,,解得.故选:D.【点睛】本题考查椭圆几何性质,在中,利用余弦定理求得是关键,属于中档题.11、B【解析】先求出圆心到直线的距离为,由此可知当圆的半径为时,圆上恰有三点到直线的距离为,当圆的半径时,圆上恰有四个点到直线的距离为,故半径的取值范围是,即可求出答案.【详解】由已知条件得的圆心坐标为,圆心到直线为,∵圆上至少有三个点到直线的距离为1,∴圆的半径的取值范围是,即,即半径的取值范围是.故选:.12、A【解析】根据充分条件与必要条件的概念,由导函数的正负与函数单调性之间关系,即可得出结果.【详解】因为函数是区间上的可导函数,且导函数为,若“对任意的,”,则在上为增函数;若在上为增函数,则对任意的恒成立,即由“对任意的,”能推出“在上为增函数”;由“在上为增函数”不能推出“对任意的,”,因此“对任意的,”是“在上为增函数”的充分不必要条件.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求出两函数在上的值域,再由已知条件可得,且,列不等式组可求得结果【详解】由,得,当时,,所以在上单调递减,所以,即,由,得,当时,,所以在上单调递增,所以,即,因为,,使得,所以,解得,故答案为:14、4【解析】由题意得,再结合抛物线的定义即可求解.【详解】由题意得,由抛物线的定义知:,故答案为:4.15、##30°【解析】过点E作CE∥AB,且使得CE=AB,则四边形ABEC是平行四边形,进而(或其补角)是所求角,算出答案即可.【详解】过点E作CE∥AB,且使得CE=AB,则四边形ABEC是平行四边形,设所求角为,于是.设原正方形ABCD边长为2,取AC的中点O,连接DO,BO,则且,而平面平面,且交于AC,所以平面ABEC,则.易得,,,而则于是,,.在中,,取DE的中点F,则,所以,即,于是.故答案为:.16、【解析】由题意可得,化简整理得到,进而可求出结果.【详解】因为双曲线的一个焦点到其一条渐近线为,所有由题意可得,即,则,所以离心率,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)根据等差数列和等比数列通项公式得到,根据通项公式的求法得到结果;(2)分组求和即可.【小问1详解】设的公差为,由已知,有解得,所以的通项公式为,的通项公式为.【小问2详解】,分组求和,分别根据等比数列求和公式与等差数列求和公式得到:.18、(1)(2)【解析】(1)设点,求出直线、直线的斜率相乘可得,结合可得答案;(2)设直线l的方程为与椭圆方程联立,代入得,设,再利用基本不等式可得答案.【小问1详解】由题意可得,,即,则,设点,∵Q为的中点,∴,∴直线斜率,直线的斜率,∴,又∵,∴,则,解得,∴椭圆C的方程为.【小问2详解】由(1)知,设直线l的方程为,联立化简得,,设,则,易知M,N到y轴的距离之和为,,设,∴,当且仅当即时等号成立,所以当时取得最大值,此时直线l的方程为.19、(1)见解析;(2).【解析】分析:依题意可知两两垂直,以点为原点建立空间直角坐标系,(1)利用直线的方向向量和平面的法向量垂直,即可证得线面平面;(2)求出两个平面的法向量,利用两个向量的夹角公式,即可求解二面角的余弦值.详解:依条件可知、、两两垂直,如图,以点为原点建立空间直角坐标系.根据条件容易求出如下各点坐标:,,,,,,,.(Ⅰ)证明:∵,,是平面的一个法向量,且,所以.又∵平面,∴平面;(Ⅱ)设是平面的法向量,因为,,由,得.解得平面的一个法向量,由已知,平面的一个法向量为,,∴二面角的余弦值是.点睛:本题考查了立体几何中的面面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.20、(1)(2)【解析】首先用列举法,求得甲、乙两人各抽一题的所有可能情况.(1)根据上述分析,分别求得“甲抽到判断题,乙抽到选择题(2)根据上述分析,求得“甲、乙两人都抽到判断题”的概率,根据对立事件概率计算公司求得“甲、乙两人中至少有一人抽到选择题【详解】把3个选择题因此基本事件的总数为.(1)记“甲抽到选择题(2)记“甲、乙两人至少有一人抽到选择题【点睛】本小题主要考查互斥事件概率计算,考查对立事件,属于基础题.21、(1)Sn=n2(2)11【解析】(1)由等差数列前n项和公式与下标和性质先求,然后结合可解;(2)由(1)中结论和已知列方程可解.【小问1详解】由,解得,又∵,∴,,∴【小问2详解】∵S3,S17–S16,Sk成等比数列,∴S3Sk=(S17–S16)2=,即9k2=332,解得:k=1122、(1)焦点为(2,0),准线方程为x=-2;(2)y=1或x-y+2=0或2x+y+1=0;(3)4x-3y+1=0.【解析】(1)根据抛物线的方程及其几何性质,求焦点和准线;(2)分直线l1的斜率为0和不为0两种情况,根据直线与抛物线只有一个公共点,由直线与x轴平行或Δ=0,得解;(3)利用点差法求出直线l2的斜率,即可得直线l2的方程【小问1详解】由题意,p=4,则焦点为(2,0),准
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【全程复习方略】2020年高考政治一轮课时提升作业(9)-必修1-第4单元-第9课(江苏专供)
- 安徽省蚌埠市A层高中2024-2025学年高二上学期第二次联考地理试卷(含答案)
- 【原创】2013-2020学年高二数学必修四导学案:3.2二倍角的三角
- 【红对勾】2021高考生物(人教版)一轮课时作业:必修3-第6章-生态环境的保护
- 《胸腔镜术后护理》课件
- 2024-2025学年广东省汕头市金平区七年级(上)期末数学试卷
- 五年级数学(小数乘法)计算题专项练习及答案汇编
- 【全程复习方略】2021年高中化学选修三课时达标·效果检测-第3章-晶体结构与性质3.4-
- 【优化方案】2020-2021学年高一下学期数学(必修3)模块综合检测
- 【志鸿优化设计】2020高考地理(人教版)一轮教学案:第17章-第1讲世界地理概况
- 列管式换热器-换热面积计算
- 10个地基基础工程质量通病及防治措施
- 25m预应力混凝土简支T梁桥设计(共30页)
- 篮球校本课程教案
- 高一学生文理分班意向表
- 高等传热学部分答案
- 地球物理学进展投稿须知
- 机床精度检验标准 VDI3441 a ISO230-2
- 七年级英语下册任务型阅读单元测试题(含答案)(word)
- 解析电力施工项目的信息化管理
- 火炬介绍 音速火炬等
评论
0/150
提交评论