版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省宁波四中2023年高二数学第一学期期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某班对期中成绩进行分析,利用随机数表法抽取样本时,先将60个同学的成绩按01,02,03,……,60进行编号,然后从随机数表第9行第5列的数1开始向右读,则选出的第6个个体是()(注:如下为随机数表的第8行和第9行)6301637859169555671998105071751286735833211234297864560782524507443815510013A.07 B.25C.42 D.522.若,则n的值为()A.7 B.8C.9 D.103.已知双曲线:的右焦点为,过的直线(为常数)与双曲线在第一象限交于点.若(为原点),则的离心率为()A. B.C. D.54.设,,,则下列不等式中一定成立的是()A. B.C. D.5.在正方体ABCD﹣A1B1C1D1中,E为棱A1B1上一点,且AB=2,若二面角B1﹣BC1﹣E为45°,则四面体BB1C1E的外接球的表面积为()A.π B.12πC.9π D.10π6.设是可导函数,当,则()A.2 B.C. D.7.抛物线焦点坐标为()A. B.C. D.8.集合,,则()A. B.C. D.9.已知圆与圆没有公共点,则实数a的取值范围为()A. B.C. D.10.已知双曲线:的左、右焦点分别为,,且,点是的右支上一点,且,,则双曲线的方程为()A. B.C. D.11.若随机事件满足,,,则事件与的关系是()A.互斥 B.相互独立C.互为对立 D.互斥且独立12.已知双曲线的离心率为2,则C的渐近线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在四棱锥中,是边长为4的等边三角形,四边形ABCD是等腰梯形,,,,若四棱锥的体积为24,则四棱锥外接球的表面积是___________.14.在空间直角坐标系中,已知,,,,则___________.15.椭圆与双曲线有公共焦点,设椭圆与双曲线在第一象限内交于点,椭圆与双曲线的离心率分别为为坐标原点,,则的取值范围是___________.16.已知直线与圆交于,两点,则的最小值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)求证:(1)是上的偶函数;(2)是上的奇函数.18.(12分)如图,正方体的棱长为2,点,分别在棱,上运动,且.(1)求证:;(2)求三棱锥的体积的最大值:(3)当,分别是棱,的中点时,求平面与平面的夹角的正弦值.19.(12分)已知椭圆F:经过点且离心率为,直线和是分别过椭圆F的左、右焦点的两条动直线,它们与椭圆分别相交于点A、B和C、D,O为坐标原点,直线AB和直线CD相交于M.记直线的斜率分别为,且(1)求椭圆F的标准方程(2)是否存在定点P,Q,使得为定值.若存在,请求出P、Q的坐标,若不存在,请说明理由20.(12分)已知椭圆的焦距为,左、右焦点分别为,为椭圆上一点,且轴,,为垂足,为坐标原点,且(1)求椭圆的标准方程;(2)过椭圆的右焦点的直线(斜率不为)与椭圆交于两点,为轴正半轴上一点,且,求点的坐标21.(12分)已知数列满足(1)求数列的通项公式;(2)设,求数列的前n项和22.(10分)已知椭圆与直线相切,点G为椭圆上任意一点,,,且的最大值为3(1)求椭圆C的标准方程;(2)设直线与椭圆C交于不同两点E,F,点O为坐标原点,且,当的面积取最大值时,求的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】从指定位置起依次读两位数码,超出编号的数删除.【详解】根据题意,从随机数表第9行第5列的数1开始向右读,依次选出的号码数是:12,34,29,56,07,52;所以第6个个体是52.故选:D.2、D【解析】根据给定条件利用组合数的性质计算作答【详解】因为,则由组合数性质有,即,所以n的值为10.故选:D3、D【解析】取双曲线的左焦点,连接,计算可得,即.设,则,,解得:,利用勾股定理计算可得,即可得出结果.【详解】取双曲线的左焦点,连接,,则因为,所以,即.,.设,则,,解得:.,,..故选:D4、B【解析】利用特殊值法可判断ACD的正误,根据不等式的性质,可判断B的正误.【详解】对于A中,令,,,,满足,,但,故A错误;对于B中,因为,所以由不等式的可加性,可得,所以,故B正确;对于C中,令,,,,满足,,但,故C错误;对于D中,令,,,,满足,,但,故D错误故选:B5、D【解析】连接交于,可得,利用线面垂直的判定定理可得:平面,于是,可得而为二面角的平面角,再求出四面体的外接球半径,进而利用球的表面积计算公式得出结论【详解】连接交于,则,易知,则平面,所以,从而为二面角的平面角,则.因为,所以,所以四面体的外接球半径故四面体BB1C1E的外接球的表面积为故选:D【点睛】本题考查了正方体的性质、线面垂直的判定与性质定理、二面角的平面角、球的表面积计算公式,考查了推理能力与计算能力,属于中档题6、C【解析】由导数的定义可得,即可得答案【详解】根据题意,,故.故选:C7、C【解析】由抛物线方程确定焦点位置,确定焦参数,得焦点坐标【详解】抛物线的焦点在轴正半轴,,,,因此焦点坐标为故选:C8、A【解析】先解不等式求得集合再求交集.【详解】解不等式得:,则有,解不等式,解得或,则有或,所以为.故选:A.9、B【解析】求出圆、的圆心和半径,再由两圆没有公共点列不等式求解作答.【详解】圆的圆心,半径,圆的圆心,半径,,因圆、没有公共点,则有或,即或,又,解得或,所以实数a的取值范围为.故选:B10、B【解析】画出图形,利用已知条件转化求解,关系,利用,解得,即可得到双曲线的方程【详解】由题意双曲线的图形如图,连接与轴交于点,设,,因为,所以,因为,所以,则,因为点是的右支上一点,所以,所以,则,因为,所以,,由勾股定理可得:,即,解得,则,所以双曲线的方程为:故选:B11、B【解析】利用独立事件,互斥事件和对立事件的定义判断即可【详解】解:因为,,又因为,所以有,所以事件与相互独立,不互斥也不对立故选:B.12、A【解析】根据离心率及a,b,c的关系,可求得,代入即可得答案.【详解】因为离心率,所以,所以,,则,所以C的渐近线方程为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】根据球的截面圆圆心与球心的连线垂直截面可确定垂直平面ABCD,构造直角三角形求解球的半径即可得解.【详解】如图,分别取BC,AD的中点,E,连接PE,,,.因为是边长为4的等边三角形,所以.因为四边形ABCD是等腰梯形,,,,所以,.因为四棱锥的体积为24,所以,所以.因为E是AD的中点,所以.因为,所以平面ABCD.因为,所以四边形ABCD外接圆的圆心为,半径.设四棱锥外接球的球心为O,连接,OP,OB,过点О作,垂足为F.易证四边形是矩形,则,.设四棱锥外接球的半径为R,则,即,解得,故四棱锥外接球的表面积是.故答案为:14、或##或【解析】根据向量平行时坐标的关系和向量的模公式即可求解.【详解】,且,设,,解得,或.故答案为:或.15、【解析】根据椭圆和双曲线得定义求得,再根据,可得,从而有,求出的范围,根据,结合基本不等式即可得出答案.【详解】解:设,则有,所以,即,又因为,所以,所以,即,则,由,得,所以,所以,则,由,得,因为,当且仅当,即时,取等号,因为,所以,所以,即,所以的取值范围是.故答案为:.16、【解析】先求出直线经过的定点,再求出圆心到定点的距离,数形结合即得解.【详解】由题得,所以直线经过定点,圆的圆心为,半径为.圆心到定点的距离为,当时,取得最小值,且最小值为.故答案为:8三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见详解(2)证明见详解【解析】利用函数奇偶性的定义证明即可【小问1详解】由题意函数定义域为且故是上的偶函数【小问2详解】由题意函数定义域为且故是上奇函数18、(1)证明见解析(2)(3)【解析】(1)向量垂直的充要条件是内积为零,建立空间直角坐标系,计算向量内积;(2)利用一元二次函数,求解体积的最大值;(3)利用平面的法向量求二面角的正弦值.【小问1详解】如下图所示,以原点,,,所在直线分别轴、轴、轴,建立空间直角坐标系,设,则,,,,则,,因为,所以,即.【小问2详解】因为,所以故的最大值为【小问3详解】设平面的一个法向量,因为此时,,所以由得取,得,,又可取平面的一个法向量,所以故平面与平面的夹角的正弦值.19、(1);(2)存在点,使得为定值.【解析】(1)设,,,结合条件即求;(2)由题可设直线方程,利用韦达定理法可得,再结合条件可得点的轨迹方程为,然后利用椭圆的定义即得结论.【小问1详解】设,,,椭圆方程为:,椭圆过点,,解得t=1,所以椭圆F的方程是【小问2详解】由题可得焦点的坐标分别为,当直线AB或CD的斜率不存在时,点M的坐标为或,当直线AB和CD的斜率都存在时,设斜率分别为,点,直线AB为,联立,得则,,同理可得,,因为,所以,化简得由题意,知,所以设点,则,所以,化简得,当直线或的斜率不存在时,点M的坐标为或,也满足此方程所以点在椭圆上,根据椭圆定义可知,存在定点,使得为定值【点睛】关键点点睛:本题的关键是利用韦达定理法及题设条件求出点M的轨迹方程,再结合椭圆的定义,从而问题得到解决.20、(1)(2)【解析】(1)利用△∽△构造齐次方程,求出离心率,再利用焦距即可求出椭圆方程;(2)将直线方程与椭圆方程联立利用韦达定理求出和,利用几何关系可知,即可得,将韦达定理代入化简即可求得点坐标.【小问1详解】∵椭圆的焦距为,∴,即,轴,∴,则,由,,则△∽△,∴,即,整理得,即,解得或(舍去)∴,∴,则椭圆的标准方程为,【小问2详解】设直线的方程为,且,将直线方程与椭圆方程联立得,,则,,∵,∴,∴,∴,∴,即.21、(1)(2)【解析】(1)当时,由,可得,两式相减化简可求得通项,(2)由(1)得,然后利用裂项相消法可求得结果【小问1详解】因为,所以时,,两式作差得,,所以时,,又时,,得,符合上式,所以的通项公式为【小问2详解】由(1)知,所以即数列的前n项和22、(1)(2)【解析】(1)设点,根据题意,得到,根据向量数量积的坐标表示,得到,根据其最小值,求出,即可得出椭圆方程;(2)设,,,联
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼师年终个人工作总结五篇
- 超市工程技术标
- 人教版初二年级上册册英语全册教学设计
- 河南省安阳市第二十中学2022年高三地理下学期期末试题含解析
- 第9课 辛亥革命(分层作业)(原卷版)
- 2025建筑装修装饰工程施工合同
- 桥梁场地砖施工合同
- 能源管理精细化管理技巧
- 咨询公司客户资料保密政策
- 教育培训机构兼职教师聘用合同
- 2022年西藏自治区中考英语真题卷(含答案与解析)
- 医院输血质量管理考核标准
- 七年级语文上册:15、《古代诗歌四首》教案
- 气道评估与处理课件
- 脑血管病的介入诊疗课件
- RCS-9626CN电动机保护测控装置
- 苗木供货服务计划方案
- 回转支承实验台测试系统设计毕业设计论文
- 全员安全生产责任考核表
- 董事长调研方案
- 危险化学品MSDS(次氯酸钠溶液)
评论
0/150
提交评论