版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
七年级下册保定数学期末试卷复习练习(Word版含答案)一、选择题1.如图所示,下列四个选项中不正确的是()A.与是同旁内角 B.与是内错角C.与是对顶角 D.与是邻补角2.下列各组图形可以通过平移互相得到的是()A. B.C. D.3.在平面直角坐标系中,点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.下列命题是假命题的是()A.对顶角相等B.两直线平行,同旁内角相等C.过直线外一点有且只有一条直线与已知直线平行D.同位角相等,两直线平行5.如图,直线AB∥CD,AE⊥CE,∠1=125°,则∠C等于()A.35° B.45° C.50° D.55°6.对于有理数a.b,定义min{a,b}的含义为:当a<b时,min{a,b}=a,当b<a时,min{a,b}=b.例如:min{1,﹣2}=﹣2,已知min{,a}=a,min{,b}=,且a和b为两个连续正整数,则a﹣b的立方根为()A.﹣1 B.1 C.﹣2 D.27.如图,中,平分,于点,,,则的度数为()A.134° B.124° C.114° D.104°8.如下图所示,动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次运动到点,第3次运动到点,……,按照这样的运动规律,点第2021次运动到点()A. B. C. D.二、填空题9.的算术平方根是____.10.若与点关于轴对称,则的值是___________;11.如图,已知OB、OC为△ABC的角平分线,DE∥BC交AB、AC于D、E,△ADE的周长为12,BC长为5,则△ABC的周长__.12.如图,已知a//b,∠1=50°,∠2=115°,则∠3=______.13.如图,在中,若将沿折叠,使点与点重合,若的周长为的周长为,则_______.14.当时,我们把称为x为“和1负倒数”.如:1的“和1负倒数”为;-3的“和1负倒数”为.若,是的“和1负倒数”,是的“和1负倒数”…依次类推,则=______;…=_____.15.在平面直角坐标系中,已知线段且轴,且点的坐标是则点的坐标是____.16.如图,在平面直角坐标系中,轴,轴,点、、、在轴上,,,,,,把一条长为2021个单位长度且无弹性的细线(线的粗细忽略不计)的一端固定在处,并按的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标________.三、解答题17.(1)计算:(2)计算:(3)计算:(4)计算:18.求下列各式中的的值:(1);(2).19.请补全推理依据:如图,已知:,,求证:.证明:∵(已知)∴()∴()又∵(已知)∴()∴()∴()20.在平面直角坐标系中,已知O,A,B,C四点的坐标分别为O(0,0),A(0,3),B(-3,3),C(-3,0).(1)在平面直角坐标系中,描出O,A,B,C四点;(2)依次连接OA,AB,BC,CO后,得到图形的形状是___________.21.解下列问题:(1)已知;求的值.(2)已知的小数部分为的整数部分为,求的值.二十二、解答题22.(1)如图,分别把两个边长为的小正方形沿一条对角线裁成个小三角形拼成一个大正方形,则大正方形的边长为_______;(2)若一个圆的面积与一个正方形的面积都是,设圆的周长为,正方形的周长为,则_____(填“”或“”或“”号);(3)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由?二十三、解答题23.已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.24.综合与探究综合与实践课上,同学们以“一个含角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线,,且,三角形是直角三角形,,,操作发现:(1)如图1.,求的度数;(2)如图2.创新小组的同学把直线向上平移,并把的位置改变,发现,请说明理由.实践探究:(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,平分,此时发现与又存在新的数量关系,请写出与的数量关系并说明理由.25.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图1,MN是平面镜,若入射光线AO与水平镜面夹角为∠1,反射光线OB与水平镜面夹角为∠2,则∠1=∠2.(现象解释)如图2,有两块平面镜OM,ON,且OM⊥ON,入射光线AB经过两次反射,得到反射光线CD.求证AB∥CD.(尝试探究)如图3,有两块平面镜OM,ON,且∠MON=55,入射光线AB经过两次反射,得到反射光线CD,光线AB与CD相交于点E,求∠BEC的大小.(深入思考)如图4,有两块平面镜OM,ON,且∠MONα,入射光线AB经过两次反射,得到反射光线CD,光线AB与CD所在的直线相交于点E,∠BED=β,α与β之间满足的等量关系是.(直接写出结果)26.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.(1)当∠A为70°时,∵∠ACD-∠ABD=∠______∴∠ACD-∠ABD=______°∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1CD-∠A1BD=(∠ACD-∠ABD)∴∠A1=______°;(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、An,请写出∠A与∠An的数量关系______;(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=______.(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q-∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.【参考答案】一、选择题1.B解析:B【分析】根据同旁内角,内错角,对顶角,邻补角的定义逐项分析.【详解】A.与是同旁内角,故该选项正确,不符合题意;B.与不是内错角,故该选项不正确,符合题意;C.与是对顶角,故该选项正确,不符合题意;D.与是邻补角,故该选项正确,不符合题意;故选B.【点睛】本题考查了同旁内角,内错角,对顶角,邻补角的定义,理解定义是解题的关键.两条直线被第三条直线所截,如果两个角分别在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角.两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的两侧,那么这两个角叫做内错角.两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的同旁,那么这两个角叫做同旁内角.两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.2.C【分析】根据平移不改变图形的形状和大小,进而得出答案.【详解】解:观察图形可知选项C中的图案通过平移后可以得到.故选:C.【点睛】本题考查了图形的平移,正确掌握平移的性质是解题关键.解析:C【分析】根据平移不改变图形的形状和大小,进而得出答案.【详解】解:观察图形可知选项C中的图案通过平移后可以得到.故选:C.【点睛】本题考查了图形的平移,正确掌握平移的性质是解题关键.3.B【分析】根据各象限内点的坐标特征解答.【详解】解:点P(-5,4)位于第二象限.故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】真命题就是正确的命题,条件和结果相矛盾的命题是假命题.【详解】解:A.对顶角相等是真命题,故A不符合题意;B.两直线平行,同旁内角互补,故B是假命题,符合题意;C.过直线外一点有且只有一条直线与已知直线平行,是真命题,故C不符合题意;D.同位角相等,两直线平行,是真命题,故D不符合题意,故选:B.【点睛】本题考查真假命题,是基础考点,掌握相关知识是解题关键.5.A【分析】过点E作EF∥AB,则EF∥CD,利用“两直线平行,内错角相等”可得出∠BAE=∠AEF及∠C=∠CEF,结合∠AEF+∠CEF=90°可得出∠BAE+∠C=90°,由邻补角互补可求出∠BAE的度数,进而可求出∠C的度数.【详解】解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠BAE=∠AEF.∵EF∥CD,∴∠C=∠CEF.∵AE⊥CE,∴∠AEC=90°,即∠AEF+∠CEF=90°,∴∠BAE+∠C=90°.∵∠1=125°,∠1+∠BAE=180°,∴∠BAE=180°﹣125°=55°,∴∠C=90°﹣55°=35°.故选:A.【点睛】本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键.6.A【分析】根据a,b的范围即可求出a−b的立方根.【详解】解:根据题意得:a≤,b≥,∵25<30<36,∴5<<6,∵a和b为两个连续正整数,∴a=5,b=6,∴a﹣b=﹣1,∴﹣1的立方根是﹣1,故选:A.【点睛】本题考查用新定义解决数学问题及无理数的估计,立方根的求法,正确理解新定义是求解本题的关键.7.B【分析】已知AE平分∠BAC,ED∥AC,根据两直线平行,同旁内角互补可知∠DEA的度数,再由周角为360°,求得∠BED的度数即可.【详解】解:∵AE平分∠BAC,∴∠BAE=∠CAE=34°,∵ED∥AC,∴∠CAE+∠AED=180°,∴∠DEA=180°-34°=146°,∵BE⊥AE,∴∠AEB=90°,∵∠AEB+∠BED+∠AED=360°,∴∠BED=360°-146°-90°=124°,故选:B.【点睛】本题考查了平行线的性质和周角的定义,熟记两直线平行,同旁内角互补是解题的关键.8.A【分析】令P点第n次运动到的点为Pn点(n为自然数).列出部分Pn点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4解析:A【分析】令P点第n次运动到的点为Pn点(n为自然数).列出部分Pn点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,−1)”,根据该规律即可得出结论.【详解】解:令P点第n次运动到的点为Pn点(n为自然数).观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,−1),P4(4,0),P5(5,1),…,∴P4n(4n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,−1).∵2021=505×4+1,∴P第2021次运动到点(2021,1).故选:A.【点睛】本题考查了规律型中的点的坐标,属于基础题,难度适中,解决该题型题目时,根据点的变化罗列出部分点的坐标,根据坐标的变化找出变化规律是关键.二、填空题9.9;【分析】根据算术平方根的定义计算可得.【详解】∵(−9)2=81,∴(−9)2的算术平方根是9,故答案为:9【点睛】本题主要考查算术平方根,解题的关键是熟练掌握算术平方根的定义.解析:9;【分析】根据算术平方根的定义计算可得.【详解】∵(−9)2=81,∴(−9)2的算术平方根是9,故答案为:9【点睛】本题主要考查算术平方根,解题的关键是熟练掌握算术平方根的定义.10.1【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案.【详解】由点与点的坐标关于y轴对称,得:,,解得:,,∴.故答案为:.【点睛】本题解析:1【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案.【详解】由点与点的坐标关于y轴对称,得:,,解得:,,∴.故答案为:.【点睛】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.11.17【详解】∵0B、OC为△ABC的角平分线,∴∠ABO=∠OBC,∠ACO=∠BCO,∵DE∥BC,∴∠DOB=∠OBC,∠EOC=∠OCB,∴∠ABO=∠DOB,∠ACO=∠EOC,解析:17【详解】∵0B、OC为△ABC的角平分线,∴∠ABO=∠OBC,∠ACO=∠BCO,∵DE∥BC,∴∠DOB=∠OBC,∠EOC=∠OCB,∴∠ABO=∠DOB,∠ACO=∠EOC,∴BD=OD,EC=OE,∴DE=OD+OE=BD+EC;∵△ADE的周长为12,∴AD+DE+AE=AD+OD+OE+AE=AD+BD+CE+AE=AB+AC=12,∵BC=7,∴△ABC的周长为:AB+AC+BC=12+5=17.故答案为17.12.65°【分析】根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.【详解】解:如图:∵a//b,∠1=50°,∴∠4=∠1=50°,∵∠2=115°,∠2=∠3+∠4,解析:65°【分析】根据平行线的性质可得∠4的度数,再根据三角形外角的性质,即可求解.【详解】解:如图:∵a//b,∠1=50°,∴∠4=∠1=50°,∵∠2=115°,∠2=∠3+∠4,∴∠3=∠2﹣∠4=115°﹣50°=65°.故答案为:65°.【点睛】此题考查了平行线的性质以及三角形外角的性质,熟练掌握相关基本性质是解题的关键.13.【分析】根据翻折得到,根据,即可求出AC,再根据E是中点即可求解.【详解】沿翻折使与重合故答案为:.【点睛】此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性解析:【分析】根据翻折得到,根据,即可求出AC,再根据E是中点即可求解.【详解】沿翻折使与重合故答案为:.【点睛】此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性质.14.【分析】根据“和1负倒数”的定义分别计算、、、…,可得到数字的变化规律:从开始每3个数为一周期循环,由此即可解答.【详解】解:由“和1负倒数”定义和可得:,,,……由此可得出从开解析:【分析】根据“和1负倒数”的定义分别计算、、、…,可得到数字的变化规律:从开始每3个数为一周期循环,由此即可解答.【详解】解:由“和1负倒数”定义和可得:,,,……由此可得出从开始每3个数为一周期循环,∵2021÷3=673…2,∴,,又·.==1,∴…==3,故答案为:;3.【点睛】本题考查新定义的实数运算、数字型规律探究,理解新定义的运算法则,正确得出数字的变化规律是解答的关键.15.或【分析】设点B的坐标为,然后根据轴得出B点的纵坐标,再根据即可得出B点的横坐标.【详解】设点B的坐标为,∵轴,点A(1,2)∴B点的纵坐标也是2,即.∵,或,解得或,∴点解析:或【分析】设点B的坐标为,然后根据轴得出B点的纵坐标,再根据即可得出B点的横坐标.【详解】设点B的坐标为,∵轴,点A(1,2)∴B点的纵坐标也是2,即.∵,或,解得或,∴点B的坐标为或.故答案为:或.【点睛】本题主要考查平行于x轴的线段上的点的特点,掌握平行于x轴的线段上的点的特点是解题的关键.16.【分析】先求出“凸”形的周长为20,得到的余数为1,由此即可解决问题.【详解】解:,,,,,∴,“凸”形的周长为20,又∵的余数为1,细线另一端所在位置的点在的中点处,坐标为.故解析:【分析】先求出“凸”形的周长为20,得到的余数为1,由此即可解决问题.【详解】解:,,,,,∴,“凸”形的周长为20,又∵的余数为1,细线另一端所在位置的点在的中点处,坐标为.故答案为:.【点睛】本题考查规律型:点的坐标,解题的关键是理解题意,求出“凸”形的周长,属于中考常考题型.三、解答题17.(1);(2);(3);(4)【分析】(1)根据算术平方根的求法计算即可;(2)先化简绝对值,再合并即可;(3)分别进行二次根式的化简、开立方,然后合并求解;(4)先化简绝对值和二次根式,解析:(1);(2);(3);(4)【分析】(1)根据算术平方根的求法计算即可;(2)先化简绝对值,再合并即可;(3)分别进行二次根式的化简、开立方,然后合并求解;(4)先化简绝对值和二次根式,再合并即可.【详解】解:(1)(2)(3)(4)【点睛】本题考查了实数的运算,涉及了二次根式的化简、绝对值的化简、开立方等知识.18.(1);(2).【分析】(1)先将原式变形为形式,再利用平方根的定义开平方求出答案;(2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案.【详解】解:(1),,,解析:(1);(2).【分析】(1)先将原式变形为形式,再利用平方根的定义开平方求出答案;(2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案.【详解】解:(1),,,;(2),,,解得:.【点睛】此题主要考查了平方根以及立方根的定义,正确把握相关定义解方程是解题关键.19.同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定定理以及性质定理证明即可.【详解】证明:∵∠1+∠2=180解析:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定定理以及性质定理证明即可.【详解】证明:∵∠1+∠2=180°(已知),∴AD∥EF(同旁内角互补,两直线平行),∴∠3=∠D(两直线平行,同位角相等),又∵∠3=∠A(已知),∴∠D=∠A(等量代换),,∴AB∥CD(内错角相等,两直线平行),∴∠B=∠C(两直线平行,内错角相等).故答案为:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题主要考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解本题的关键.20.(1)见解析;(2)正方形【分析】(1)根据平面直角坐标系找出各点的位置即可;(2)观察图形可知四边形ABCO是正方形.【详解】解:(1)如图.(2)四边形ABCO是正方形.【点睛】解析:(1)见解析;(2)正方形【分析】(1)根据平面直角坐标系找出各点的位置即可;(2)观察图形可知四边形ABCO是正方形.【详解】解:(1)如图.(2)四边形ABCO是正方形.【点睛】本题考查了坐标与图形性质,能够准确在平面直角坐标系中找出点的位置是解题的关键.21.(1);(2).【分析】(1)直接利用非负数的性质得出x,y的值,再利用立方根的定义求出答案;(2)直接估算无理数的取值范围得出a,b的值,进而得出答案.【详解】原式.解析:(1);(2).【分析】(1)直接利用非负数的性质得出x,y的值,再利用立方根的定义求出答案;(2)直接估算无理数的取值范围得出a,b的值,进而得出答案.【详解】原式.【点睛】此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键.二十二、解答题22.(1);(2);(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形解析:(1);(2);(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm,∴小正方形的面积为1cm2,∴两个小正方形的面积之和为2cm2,即所拼成的大正方形的面积为2cm2,∴大正方形的边长为cm,(2)∵,∴,∴,设正方形的边长为a∵,∴,∴,∴故答案为:<;(3)解:不能裁剪出,理由如下:∵长方形纸片的长和宽之比为,∴设长方形纸片的长为,宽为,则,整理得:,∴,∵450>400,∴,∴,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.二十三、解答题23.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°【分析】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB解析:(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不变,30°【分析】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,进而可求解;(3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解.【详解】解:(1)过E作EH∥AB,如图1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如图2,过F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键.24.(1);(2)理由见解析;(3),理由见解析.【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠解析:(1);(2)理由见解析;(3),理由见解析.【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠DBC,则∠ABD=∠ABC−∠DBC=60°−∠1,进而得出结论;(3)过点C作CP∥a,由角平分线定义得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行线的性质得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出结论.【详解】解:(1)如图1,,,,;图1(2)理由如下:如图2.过点作,图2,,,,,,;(3),图3理由如下:如图3,过点作,平分,,,又,,,,,又,,.【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.25.【现象解释】见解析;【尝试探究】BEC70;【深入思考】2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠解析:【现象解释】见解析;【尝试探究】BEC70;【深入思考】2.【分析】[现象解释]根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用∠2+∠3=90°得出∠1+∠2+∠3+∠4=180°,即可得出∠DCB+∠ABC=180°,即可证得AB∥CD;[尝试探究]根据三角形内角和定理求得∠2+∠3=125°,根据平面镜反射光线的规律得∠1=∠2,∠3=∠4,再利用平角的定义得出∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,即可得出∠EBC+BCE=360°-250°=110°,根据三角形内角和定理即可得出∠BEC=180°-110°=70°;[深入思考]利用平角的定义得出∠ABC=180°-2∠2,∠BCD=180°-2∠3,利用外角的性质∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,而∠BOC=∠3-∠2=α,即可证得β=2α.【详解】[现象解释]如图2,∵OM⊥ON,∴∠CON=90°,∴∠2+∠3=90°∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴∠DCB+∠ABC=180°,∴AB∥CD;【尝试探究】如图3,在△OBC中,∵∠COB=55°,∴∠2+∠3=125°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=250°,∵∠1+∠2+∠EBC+∠3+∠4+∠BCE=360°,∴∠EBC+BCE=360°-250°=110°,∴∠BEC=180°-110°=70°;【深入思考】如图4,β=2α,理由如下:∵∠1=∠2,∠3=∠4,∴∠ABC=180°-2∠2,∠BCD=180°-2∠3,∴∠BED=∠ABC-∠BCD=(180°-2∠2)-(180°-2∠3)=2(∠3-∠2)=β,∵∠BOC=∠3-∠2=α,∴β=2α.【点睛】本题考查了平行线的判定,三角形外角的性质以及三角形内角和定理,熟练掌握三角形的性质是解题的关键.26.(1)∠A;70°;35°;(2)∠A=2n∠An(3)25°(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.【分析】(1)根据角平分线的定义可得∠A1BC=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 图书馆卫生间管理规定
- 纪录片编剧服务协议
- 体育运动区房产交易样板
- 研发部门休假管理方案
- 学校地暖工程服务合同
- 旅游推广记者站管理办法
- 电力设施电子招投标竞争格局
- 精密仪器电焊工招聘合同
- 墙绘施工合同公园景观墙绘
- 房屋户外景观水景施工合同
- 传染病防治规划实施细则
- 第五单元中国特色社会主义社会建设单元测试-2023-2024学年中职高教版(2023)中国特色社会主义
- 汽车计划员岗位职责
- 电大财务大数据分析编程作业2
- 第八届全国红十字应急救护大赛理论试题库大全-下(多选题)
- 2024年13起典型火灾案例及消防安全知识专题培训
- 五年级道德与法治下册第一单元单元整体教学设计
- 小班体育活动《跳圈圈》含反思
- 鞋子试穿报告
- 大学生职业生涯规划书数学与应用数学
- 漠河舞厅赏析
评论
0/150
提交评论