重庆市渝东六校2023年数学高二上期末考试试题含解析_第1页
重庆市渝东六校2023年数学高二上期末考试试题含解析_第2页
重庆市渝东六校2023年数学高二上期末考试试题含解析_第3页
重庆市渝东六校2023年数学高二上期末考试试题含解析_第4页
重庆市渝东六校2023年数学高二上期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市渝东六校2023年数学高二上期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆:的左、右焦点为,,上顶点为P,则()A.为锐角三角形 B.为钝角三角形C.为直角三角形 D.,,三点构不成三角形2.“”是“圆与轴相切”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件3.已知x,y满足约束条件,则的最大值为()A.3 B.C.1 D.4.圆x2+y2-4=0与圆x2+y2-4x+4y-12=0公共弦所在直线方程为()A. B.C. D.5.已知△的顶点B,C在椭圆上,顶点A是椭圆的一个焦点,且椭圆的另一个焦点在BC边上,则△的周长是()A. B.C.8 D.166.平行直线:与:之间的距离等于()A. B.C. D.7.若数列为等比数列,且,,则()A.8 B.16C.32 D.648.设,,,…,,,则()A. B.C. D.9.已知数列中,,则()A.2 B.C. D.10.数列满足,,,则数列的前8项和为()A.25 B.26C.27 D.2811.在正方体的12条棱中任选3条,其中任意2条所在的直线都是异面直线的概率为()A. B.C. D.12.在一个正方体中,为正方形四边上的动点,为底面正方形的中心,分别为中点,点为平面内一点,线段与互相平分,则满足的实数的值有A.0个 B.1个C.2个 D.3个二、填空题:本题共4小题,每小题5分,共20分。13.已知数列是公差不为0的等差数列,,且,,成等比数列.(1)求数列的通项公式;(2)设数列的前项和为,求.14.若圆的一条直径的端点是、,则此圆的方程是_______15.在△ABC中,角A,B,C所对的边分别为a,b,c,设△ABC的面积为S,其中,,则S的最大值为______16.已知椭圆:的右焦点为,且经过点(1)求椭圆的方程以及离心率;(2)若直线与椭圆相切于点,与直线相交于点.在轴是否存在定点,使?若存在,求出点的坐标;若不存在,说明理由三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的焦点为,经过点的直线与抛物线交于两点,其中点A在第一象限;(1)若直线的斜率为,求的值;(2)求线段的长度的最小值18.(12分)已知函数.(1)当时,证明:函数图象恒在函数的图象的下方;(2)讨论方程的根的个数.19.(12分)已知圆C经过坐标原点O和点(4,0),且圆心在x轴上(1)求圆C的方程;(2)已知直线l:与圆C相交于A、B两点,求所得弦长值20.(12分)已知数列满足,().(1)证明:数列是等比数列,并求出数列的通项公式;(2)数列满足:(),求数列的前项和.21.(12分)已知抛物线上的点M到焦点F的距离为5,点M到x轴的距离为(1)求抛物线C的方程;(2)若抛物线C的准线l与x轴交于点Q,过点Q作直线交抛物线C于A,B两点,设直线FA,FB的斜率分别为,.求的值22.(10分)在△ABC中,角A,B,C所对的边分别a,b,c.已知2bcosB=ccosA+acosC(1)求B;(2)若a=2,,设D为CB延长线上一点,且AD⊥AC,求线段BD的长

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意求得,要判断的形状,只需要看是什么角即可,利用余弦定理判断,从而可得结论.【详解】解:由椭圆:,得,则,则,所以且为锐角,因为,所以锐角,所以为锐角三角形.故选:A.2、A【解析】根据充分不必要条件的定义和圆心到轴的距离求出可得答案.【详解】时,圆的圆心坐标为,半径为2,此时圆与轴相切;当圆与轴相切时,因为圆的半径为2,所以圆心到轴的距离为,所以,“”是“圆与轴相切”的充分不必要条件故选:A3、A【解析】由题意首先画出可行域,然后结合目标函数的几何意义求解最大值即可.【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.故选:A【点睛】方法点睛:求线性目标函数的最值,当时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.4、B【解析】两圆的方程消掉二次项后的二元一次方程即为公共弦所在直线方程.【详解】由x2+y2-4=0与x2+y2-4x+4y-12=0两式相减得:,即.故选:B5、D【解析】根据椭圆定义求解【详解】由椭圆定义得△的周长是,故选:D.6、B【解析】先由两条直线平行解出,再按照平行线之间距离公式求解.【详解】,则:,即,距离为.故选:B.7、B【解析】设等比数列的公比为,根据等比数列的通项公式得到,即可求出,再根据计算可得;【详解】解:设等比数列公比为,因为、,所以,所以;故选:B8、B【解析】根据已知条件求得的规律,从而确定正确选项.【详解】,,,,,……,以此类推,,所以.故选:B9、A【解析】根据数列的周期性即可求解.【详解】由得,显然该数列中的数从开始循环,数列的周期是,所以.故选:A.10、C【解析】根据通项公式及求出,从而求出前8项和.【详解】当时,,当时,,当时,,当时,,当时,,当时,,则数列的前8项和为.故选:C11、B【解析】根据正方体的性质确定3条棱两两互为异面直线的情况数,结合组合数及古典概率的求法,求任选3条其中任意2条所在的直线是异面直线的概率.【详解】如下图,正方体中如:中任意2条所在的直线都是异面直线,∴这样的3条直线共有8种情况,∴任选3条,其中任意2条所在的直线都是异面直线的概率为.故选:B.12、C【解析】因为线段D1Q与OP互相平分,所以四点O,Q,P,D1共面,且四边形OQPD1为平行四边形.若P在线段C1D1上时,Q一定在线段ON上运动,只有当P为C1D1的中点时,Q与点M重合,此时λ=1,符合题意若P在线段C1B1与线段B1A1上时,在平面ABCD找不到符合条件Q;在P在线段D1A1上时,点Q在直线OM上运动,只有当P为线段D1A1的中点时,点Q与点M重合,此时λ=0符合题意,所以符合条件的λ值有两个故选C.二、填空题:本题共4小题,每小题5分,共20分。13、(1);(2).【解析】(1)根据,且,,成等比数列,利用等比中项由,求得公差即可.(2)由(1)得到,再利用裂项相消法求解.【详解】(1)设数列的公差为d,因为,且,,成等比数列,所以,即,解得或(舍去),所以数列的通项公式;(2)由(1)知:,所以.【点睛】方法点睛:求数列的前n项和的方法(1)公式法:①等差数列的前n项和公式,②等比数列的前n项和公式;(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n项和用错位相减法求解.(6)并项求和法:一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如an=(-1)nf(n)类型,可采用两项合并求解14、【解析】先设圆上任意一点的坐标,然后利用直径对应的圆周角为直角,再利用向量垂直建立方程即可【详解】设圆上任意一点的坐标为可得:,则有:,即解得:故答案为:15、【解析】应用余弦定理有,再由三角形内角性质及同角三角函数平方关系求,根据基本不等式求得,注意等号成立条件,最后利用三角形面积公式求S的最大值.【详解】由余弦定理知:,而,所以,而,即,当且仅当时等号成立,又,当且仅当时等号成立.故答案为:16、(1),;(2)存在定点,为【解析】(1)利用,,求解方程(2)设直线方程为,与椭圆联立利用判别式等于0得,并求得切点坐标及,假设存在点,利用化简求值【详解】(1)由已知得,,,,椭圆的方程为,离心率为;(2)在轴存在定点,为使,证明:设直线方程为代入得,化简得由,得,,设,则,,则,设,则,则假设存在点解得所以在轴存在定点使【点睛】本题考查直线与椭圆的位置关系,考查切线的应用,利用判别式等于0得坐标是解决问题的关键,考查计算能力,是中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)3;(2)12.【解析】(1)联立直线l与抛物线C的方程,求出A和B的横坐标即可得AFBF(2)设直线l方程为,与抛物线C方程联立,求出线段AB长度求其最小值即可.【小问1详解】设,抛物线的焦点为,直线l经过点F且斜率,直线l的方程为,将直线l方程与抛物线消去y可得,点A是第一象限内的交点,解方程得,∴.【小问2详解】设,由题知直线l斜率不为0,故设直线l的方程为:,代入抛物线C的方程化简得,,∵>0,∴,∴,当且仅当m=0时取等号,∴AB长度最小值为12.18、(1)证明见解析(2)答案见解析【解析】(1)构造函数,利用导数判断单调性,并求出函数的最大值小于零,即,即可得证;(2)将方程根的个数转化为函数图象与交点的问题,大致画出函数的图象,即可求解.【小问1详解】设,其中,则,在区间上,单调递减,又∵,即时,,∴,∴在区间上函数的图象恒在函数的图象的下方.【小问2详解】由得,即,令,则,令,得,当时,,单调递增,当时,,单调递减,∴在处取得最小值,∴,又∵当时,,当时,,有零点存在性定理可知函数有唯一的零点,∴的大致图象如图所示,∴当时,方程的根的个数为0;当或时,方程的根的个数为1;当时,方程的根的个数为2.19、(1)(2)【解析】(1)求出圆心和半径,写出圆的方程;(2)求出圆心到直线距离,进而利用垂径定理求出弦长.【小问1详解】由题意可得,圆心为(2,0),半径为2.则圆的方程为;【小问2详解】由(1)可知:圆C半径为,设圆心(2,0)到l的距离为d,则,由垂径定理得:20、(1)证明见解析,;(2).【解析】(1)将给定等式变形,计算即可判断数列类型,再求出其通项而得解;(2)利用(1)的结论求出数列的通项,然后利用错位相减法求解即得.【详解】(1)因数列满足,,则,而,于是数列是首项为1,公比为2的等比数列,,即,所以数列是等比数列,,;(2)由(1)知,则于是得,,所以数列的前项和.21、(1)(2)0【解析】(1)由焦半径公式求C的方程;(2)设直线AB方程,与抛物线方程联立,由韦

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论