




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省长沙市铁路第一中学2024届高三4月(二诊)调研测试卷(康德版)数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.方程在区间内的所有解之和等于()A.4 B.6 C.8 D.102.已知盒中有3个红球,3个黄球,3个白球,且每种颜色的三个球均按,,编号,现从中摸出3个球(除颜色与编号外球没有区别),则恰好不同时包含字母,,的概率为()A. B. C. D.3.设m,n为直线,、为平面,则的一个充分条件可以是()A.,, B.,C., D.,4.已知集合,,则()A. B. C. D.5.执行程序框图,则输出的数值为()A. B. C. D.6.已知等差数列的公差不为零,且,,构成新的等差数列,为的前项和,若存在使得,则()A.10 B.11 C.12 D.137.已知甲、乙两人独立出行,各租用共享单车一次(假定费用只可能为、、元).甲、乙租车费用为元的概率分别是、,甲、乙租车费用为元的概率分别是、,则甲、乙两人所扣租车费用相同的概率为()A. B. C. D.8.网格纸上小正方形边长为1单位长度,粗线画出的是某几何体的三视图,则此几何体的体积为()A.1 B. C.3 D.49.已知向量满足,且与的夹角为,则()A. B. C. D.10.函数f(x)=2x-3A.[32C.[3211.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种 B.36种 C.24种 D.18种12.若函数有两个极值点,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则的值为____14.等差数列(公差不为0),其中,,成等比数列,则这个等比数列的公比为_____.15.在平面直角坐标系中,曲线在点处的切线与x轴相交于点A,其中e为自然对数的底数.若点,的面积为3,则的值是______.16.下表是关于青年观众的性别与是否喜欢综艺“奔跑吧,兄弟”的调查数据,人数如下表所示:不喜欢喜欢男性青年观众4010女性青年观众3080现要在所有参与调查的人中用分层抽样的方法抽取个人做进一步的调研,若在“不喜欢的男性青年观众”的人中抽取了8人,则的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在①,②,③这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列的公差为,等差数列的公差为.设分别是数列的前项和,且,,(1)求数列的通项公式;(2)设,求数列的前项和.18.(12分)已知函数.(1)当时,求函数的值域;(2)的角的对边分别为且,,求边上的高的最大值.19.(12分)等差数列中,,,分别是下表第一、二、三行中的某一个数,且其中的任何两个数不在下表的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)请选择一个可能的组合,并求数列的通项公式;(2)记(1)中您选择的的前项和为,判断是否存在正整数,使得,,成等比数列,若有,请求出的值;若没有,请说明理由.20.(12分)如图,在三棱柱中,,,,为的中点,且.(1)求证:平面;(2)求锐二面角的余弦值.21.(12分)已知圆外有一点,过点作直线.(1)当直线与圆相切时,求直线的方程;(2)当直线的倾斜角为时,求直线被圆所截得的弦长.22.(10分)设都是正数,且,.求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
画出函数和的图像,和均关于点中心对称,计算得到答案.【详解】,验证知不成立,故,画出函数和的图像,易知:和均关于点中心对称,图像共有8个交点,故所有解之和等于.故选:.【点睛】本题考查了方程解的问题,意在考查学生的计算能力和应用能力,确定函数关于点中心对称是解题的关键.2、B【解析】
首先求出基本事件总数,则事件“恰好不同时包含字母,,”的对立事件为“取出的3个球的编号恰好为字母,,”,记事件“恰好不同时包含字母,,”为,利用对立事件的概率公式计算可得;【详解】解:从9个球中摸出3个球,则基本事件总数为(个),则事件“恰好不同时包含字母,,”的对立事件为“取出的3个球的编号恰好为字母,,”记事件“恰好不同时包含字母,,”为,则.故选:B【点睛】本题考查了古典概型及其概率计算公式,考查了排列组合的知识,解答的关键在于正确理解题意,属于基础题.3、B【解析】
根据线面垂直的判断方法对选项逐一分析,由此确定正确选项.【详解】对于A选项,当,,时,由于不在平面内,故无法得出.对于B选项,由于,,所以.故B选项正确.对于C选项,当,时,可能含于平面,故无法得出.对于D选项,当,时,无法得出.综上所述,的一个充分条件是“,”故选:B【点睛】本小题主要考查线面垂直的判断,考查充分必要条件的理解,属于基础题.4、D【解析】
先求出集合B,再与集合A求交集即可.【详解】由已知,,故,所以.故选:D.【点睛】本题考查集合的交集运算,考查学生的基本运算能力,是一道容易题.5、C【解析】
由题知:该程序框图是利用循环结构计算并输出变量的值,计算程序框图的运行结果即可得到答案.【详解】,,,,,满足条件,,,,,满足条件,,,,,满足条件,,,,,满足条件,,,,,不满足条件,输出.故选:C【点睛】本题主要考查程序框图中的循环结构,属于简单题.6、D【解析】
利用等差数列的通项公式可得,再利用等差数列的前项和公式即可求解.【详解】由,,构成等差数列可得即又解得:又所以时,.故选:D【点睛】本题考查了等差数列的通项公式、等差数列的前项和公式,需熟记公式,属于基础题.7、B【解析】
甲、乙两人所扣租车费用相同即同为1元,或同为2元,或同为3元,由独立事件的概率公式计算即得.【详解】由题意甲、乙租车费用为3元的概率分别是,∴甲、乙两人所扣租车费用相同的概率为.故选:B.【点睛】本题考查独立性事件的概率.掌握独立事件的概率乘法公式是解题基础.8、A【解析】
采用数形结合,根据三视图可知该几何体为三棱锥,然后根据锥体体积公式,可得结果.【详解】根据三视图可知:该几何体为三棱锥如图该几何体为三棱锥,长度如上图所以所以所以故选:A【点睛】本题考查根据三视图求直观图的体积,熟悉常见图形的三视图:比如圆柱,圆锥,球,三棱锥等;对本题可以利用长方体,根据三视图删掉没有的点与线,属中档题.9、A【解析】
根据向量的运算法则展开后利用数量积的性质即可.【详解】.故选:A.【点睛】本题主要考查数量积的运算,属于基础题.10、A【解析】
根据幂函数的定义域与分母不为零列不等式组求解即可.【详解】因为函数y=2x-3解得x≥32且∴函数f(x)=2x-3+1【点睛】定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3)若已知函数fx的定义域为a,b,则函数fgx11、B【解析】
根据条件2名内科医生,每个村一名,3名外科医生和3名护士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据排列组合进行计算即可.【详解】2名内科医生,每个村一名,有2种方法,3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,则分1名外科,2名护士和2名外科医生和1名护士,若甲村有1外科,2名护士,则有C3若甲村有2外科,1名护士,则有C3则总共的分配方案为2×(9+9)=2×18=36种,故选:B.【点睛】本题主要考查了分组分配问题,解决这类问题的关键是先分组再分配,属于常考题型.12、A【解析】试题分析:由题意得有两个不相等的实数根,所以必有解,则,且,∴.考点:利用导数研究函数极值点【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】
根据的正负值,代入对应的函数解析式求解即可.【详解】解:.故答案为:.【点睛】本题考查分段函数函数值的求解,是基础题.14、4【解析】
根据等差数列关系,用首项和公差表示出,解出首项和公差的关系,即可得解.【详解】设等差数列的公差为,由题意得:,则整理得,,所以故答案为:4【点睛】此题考查等差数列基本量的计算,涉及等比中项,考查基本计算能力.15、【解析】
对求导,再根据点的坐标可得切线方程,令,可得点横坐标,由的面积为3,求解即得.【详解】由题,,切线斜率,则切线方程为,令,解得,又的面积为3,,解得.故答案为:【点睛】本题考查利用导数研究函数的切线,难度不大.16、32【解析】
由已知可得抽取的比例,计算出所有被调查的人数,再乘以抽取的比例即为分层抽样的样本容量.【详解】由题可知,抽取的比例为,被调查的总人数为人,则分层抽样的样本容量是人.故答案为:32【点睛】本题考查分层抽样中求样本容量,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
方案一:(1)根据等差数列的通项公式及前n项和公式列方程组,求出和,从而写出数列的通项公式;(2)由第(1)题的结论,写出数列的通项,采用分组求和、等比求和公式以及裂项相消法,求出数列的前项和.其余两个方案与方案一的解法相近似.【详解】解:方案一:(1)∵数列都是等差数列,且,,解得,综上(2)由(1)得:方案二:(1)∵数列都是等差数列,且,解得,.综上,(2)同方案一方案三:(1)∵数列都是等差数列,且.,解得,,.综上,(2)同方案一【点睛】本题考查了等差数列的通项公式、前n项和公式的应用,考查了分组求和、等比求和及裂项相消法求数列的前n项和,属于中档题.18、(1).(2)【解析】
(1)由题意利用三角恒等变换化简函数的解析式,再利用正弦函数的定义域和值域,得出结论.(2)由题意利用余弦定理、三角形的面积公式、基本不等式求得的最大值,可得边上的高的最大值.【详解】解:(1)∵函数,当时,,.(2)中,,∴.由余弦定理可得,当且仅当时,取等号,即的最大值为3.再根据,故当取得最大值3时,取得最大值为.【点睛】本题考查降幂公式、两角和的正弦公式,考查正弦函数的性质,余弦定理,三角形面积公式,所用公式较多,选用恰当的公式是解题关键,本题属于中档题.19、(1)见解析,或;(2)存在,.【解析】
(1)满足题意有两种组合:①,,,②,,,分别计算即可;(2)由(1)分别讨论两种情况,假设存在正整数,使得,,成等比数列,即,解方程是否存在正整数解即可.【详解】(1)由题意可知:有两种组合满足条件:①,,,此时等差数列,,,所以其通项公式为.②,,,此时等差数列,,,所以其通项公式为.(2)若选择①,.则.若,,成等比数列,则,即,整理,得,即,此方程无正整数解,故不存在正整数,使,,成等比数列.若选则②,,则,若,,成等比数列,则,即,整理得,因为为正整数,所以.故存在正整数,使,,成等比数列.【点睛】本题考查等差数列的通项公式及前n项和,涉及到等比数列的性质,是一道中档题.20、(1)证明见解析;(2).【解析】
(1)证明后可得平面,从而得,结合已知得线面垂直;(2)以为坐标原点,以为轴,为轴,为建立空间直角坐标系,设,写出各点坐标,求出二面角的面的法向量,由法向量夹角的余弦值得二面角的余弦值.【详解】(1)证明:因为,为中点,所以,又,,所以平面,又平面,所以,又,,所以平面.(2)由已知及(1)可知,,两两垂直,所以以为坐标原点,以为轴,为轴,为建立空间直角坐标系,设,则,,,,,.设平面的法向量,则,即,令,则;设平面的法向量,则,即,令,则,所以.故锐二面角的余弦值为.【点睛】本题考查证明线面垂直,解题时注意线面垂直与线线垂直的相互转化.考查求二面角,求空间角一般是建立空间直角坐标系,用向量法易得结论.21、(1)或(2).【解析】
(1)根据题意分斜率不存在和斜率存在两种情况即可求得结果;(2)先求出直线方程,然后求得圆心与直线的距离,由弦长公式即可得出答案.【详解】解:(1)由题意可得,直线与圆相切当斜率不存在时,直线的方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 抗灾抢险宣传方案(3篇)
- DB23-T2898-2021-杨卷叶象甲防治技术规程-黑龙江省
- DB23-T2876-2021-北苍术栽培技术规程-黑龙江省
- 工程大包项目管理制度
- 加气站发生火灾应急预案(3篇)
- 工地高效工作管理制度
- 养老机构人员管理制度
- 经营绩效分析方案(3篇)
- 展板字体编制方案(3篇)
- 物业爱心陪护方案(3篇)
- 刺法灸法学各章节习题和各章节参考答案
- 【MOOC】电子商务那些事-中南财经政法大学 中国大学慕课MOOC答案
- 【MOOC】分子生物学-华中农业大学 中国大学慕课MOOC答案
- 物业保洁常用药剂MSDS
- 药物饮料市场洞察报告
- 公司招标书范本大全(三篇)
- 人工智能与信息社会学习通超星期末考试答案章节答案2024年
- 10以内连加练习题完整版51
- GB 30254-2024高压三相笼型异步电动机能效限定值及能效等级
- 机场建造行业投资机会与风险识别及应对策略报告
- 自来水厂运行工试题库题库及答案
评论
0/150
提交评论