




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
青海省平安县第一高级中学2024届高二上数学期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在棱长为1的正方体中,是线段上一个动点,则下列结论正确的有()A.不存在点使得异面直线与所成角为90°B.存在点使得异面直线与所成角为45°C.存在点使得二面角的平面角为45°D.当时,平面截正方体所得的截面面积为2.若等轴双曲线C过点,则双曲线C的顶点到其渐近线的距离为()A.1 B.C. D.23.对于公差为1的等差数列,;公比为2的等比数列,,则下列说法不正确的是()A.B.C.数列为等差数列D.数列的前项和为4.双曲线C:的渐近线方程为()A. B.C. D.5.已知抛物线的焦点为F,点A在抛物线上,直线FA与抛物线的准线交于点M,O为坐标原点.若,且,则()A.1 B.2C.3 D.46.焦点坐标为,(0,4),且长半轴的椭圆方程为()A. B.C. D.7.的三个内角A,B,C所对的边分别为a,b,c,若,则()A. B.C. D.8.阿基米德曾说过:“给我一个支点,我就能撬动地球”.他在做数学研究时,有一个有趣的问题:一个边长为2的正方形内部挖了一个内切圆,现在以该内切圆的圆心且平行于正方形的一边的直线为轴旋转一周形成几何体,则该旋转体的体积为()A. B.C. D.9.正三棱锥的侧面都是直角三角形,,分别是,的中点,则与平面所成角的余弦值为()A. B.C. D.10.已知两条平行直线:与:间的距离为3,则()A.25或-5 B.25C.5 D.21或-911.直线与直线,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.设函数是奇函数的导函数,且,当时,,则不等式的解集为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线C:的两焦点分别为,,P为双曲线C上一点,若,则=___________.14.直线被圆所截得的弦的长为_____15.已知是椭圆的两个焦点,分别是该椭圆的左顶点和上顶点,点在线段上,则的最小值为__________.16.已知双曲线的左焦点为F,点P在双曲线右支上,若线段PF的中点在以原点O为圆心,为半径的圆上,且直线PF的斜率为,则该双曲线的离心率是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱柱中,平面ABC,,,,点D,E分别在棱和棱上,且,,M为棱的中点(1)求证:;(2)求直线AB与平面所成角的正弦值18.(12分)已知的三个内角,,的对边分别为,,,且满足.(1)求角的大小;(2)若,,,求的长.19.(12分)已知函数,当时,有极大值3(1)求的值;(2)求函数的极小值20.(12分)已知直线经过两条直线和的交点,且与直线垂直(1)求直线的一般式方程;(2)若圆的圆心为点,直线被该圆所截得的弦长为,求圆的标准方程21.(12分)已知函数的图象在点处的切线与直线平行(是自然对数的底数).(1)求的值;(2)若在上恒成立,求实数的取值范围.22.(10分)如图,在平行四边形ABCD中,AB=1,BC=2,∠ABC=60°,四边形ACEF为正方形,且平面ABCD⊥平面ACEF(1)证明:AB⊥CF;(2)求点C到平面BEF距离;(3)求平面BEF与平面ADF夹角的正弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由正方体的性质可将异面直线与所成的角可转化为直线与所成角,而当为的中点时,可得,可判断A;与或重合时,直线与所成的角最小可判断B;当与重合时,二面角的平面角最小,通过计算可判断C;过作,交于,交于点,由题意可得四边形即为平面截正方体所得的截面,且四边形是等腰梯形,然后利用已知数据计算即可判断D.【详解】异面直线与所成的角可转化为直线与所成角,当为中点时,,此时与所成的角为90°,所以A错误;当与或重合时,直线与所成角最小,为60°,所以B错误;当与重合时,二面角的平面角最小,,所以,所以C错误;对于D,过作,交于,交于点,因为,所以、分别是、的中点,又,所以,四边形即为平面截正方体所得的截面,因为,且,所以四边形是等腰梯形,作交于点,所以,,所以梯形的面积为,所以D正确.故选:D.2、A【解析】先求出双曲线C的标准方程,再求顶点到其渐近线的距离.【详解】设等轴双曲线C的标准方程为,因为点在双曲线上,所以,解得,所以双曲线C的标准方程为,故上顶点到其一条渐近线的距离为.故选:A3、B【解析】由等差数列的通项公式判定选项A正确;利用等比数列的通项公式求出,即判定选项B错误;利用对数的运算和等差数列的定义判定选项C正确;利用错位相减法求和,即判定选项D正确.【详解】对于A:由条件可得,,即选项A正确;对于B:由条件可得,,即选项B错误;对于C:因为,所以,则,即数列是首项和公差均为的等差数列,即选项C正确;对于D:,设数列的前项和为,则,,上面两式相减可得,所以,即选项D正确.故选:B.4、D【解析】根据给定的双曲线方程直接求出其渐近线方程作答.【详解】双曲线C:的实半轴长,虚半轴长,即有,而双曲线C的焦点在y轴上,所以双曲线C的渐近线的方程为,即.故选:D5、D【解析】设,由和在抛物线上,求出和,利用求出p.【详解】过A作AP垂直x轴与P.抛物线的焦点为,准线方程为.设,因为,所以,解得:.因为在抛物线上,则.所以,即,解得:.故选:D6、B【解析】根据题意可知,即可由求出,再根据焦点位置得出椭圆方程【详解】因为,所以,而焦点在轴上,所以椭圆方程为故选:B7、D【解析】利用正弦定理边化角,角化边计算即可.【详解】由正弦定理边化角得,,再由正弦定理角化边得,即故选:D.8、B【解析】根据题意,结合圆柱和球的体积公式进行求解即可.【详解】由题意可知:该旋转体的体积等于底面半径为,高为的圆柱的体积减去半径为的球的体积,即,故选:B9、C【解析】以P为原点,PA为x轴,PB为y轴,PC为z轴,建立空间直角坐标系,利用向量法能求出PB与平面PEF所成角的正弦值.【详解】∵正三棱锥的侧面都是直角三角形,E,F分别是AB,BC的中点,∴以P为原点,PA为x轴,PB为y轴,PC为z轴,建立空间直角坐标系,设,则,,,,,,,,设平面PEF的法向量,则,取,得,设PB与平面PEF所成角为,则,∴PB与平面PEF所成角的正弦值为.故选:C.10、A【解析】根据平行直线的性质,结合平行线间距离公式进行求解即可.【详解】因为直线:与:平行,所以有,因为两条平行直线:与:间距离为3,所以,或,当时,;当时,,故选:A11、A【解析】根据直线与直线的垂直,列方程,求出,再判断充分性和必要性即可.【详解】解:若,则,解得或,即或,所以”是“充分不必要条件.故选:A.【点睛】本题考查直线一般式中直线与直线垂直的系数关系,考查充分性和必要性的判断,是基础题.12、D【解析】设,则,分析可得为偶函数且,求出的导数,分析可得在上为减函数,进而分析可得上,,在上,,结合函数的奇偶性可得上,,在上,,又由即,则有或,据此分析可得答案【详解】根据题意,设,则,若奇函数,则,则有,即函数为偶函数,又由,则,则,,又由当时,,则在上为减函数,又由,则在上,,在上,,又由为偶函数,则在上,,在上,,即,则有或,故或,即不等式的解集为;故选:D二、填空题:本题共4小题,每小题5分,共20分。13、18或2##2或18【解析】先由双曲线的方程求出,再利用双曲线的定义列方程求解即可【详解】由,得,则,因为双曲线C:的两焦点分别为,,P为双曲线C上一点,所以,即,所以或,因为,所以或都符合题意,故答案为:18或214、【解析】圆转化为标准式方程,圆心到直线的距离为,圆的半径为,因此所求弦长为考点:1.圆的方程;2.直线被圆截得的弦长的求法;15、【解析】由题可设,则,然后利用数量积坐标表示及二次函数的性质即得.【详解】由题可得,,设,因为点P在线段AB上,所以,∴,∴当时,的最小值为.故答案为:.16、3【解析】如图利用条件可得,,然后利用双曲线的定义可得,即求.【详解】如图设双曲线的右焦点为,线段PF的中点为M,连接,则,又直线PF的斜率为,∴在直角三角形中,,∴,∴,即,∴.故答案:3.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解析】(1)由线面垂直、等腰三角形的性质易得、,再根据线面垂直的判定及性质证明结论;(2)构建空间直角坐标系,确定相关点坐标,进而求的方向向量、面的法向量,应用空间向量夹角的坐标表示求直线与平面所成角的正弦值.【小问1详解】在三棱柱中,平面,则平面,由平面,则,,则,又为的中点,则,又,则平面,由平面,因此,.【小问2详解】以为原点,以,,为轴、轴、轴的正方向建立空间直角坐标系,如图所示,可得:,,,,,,.∴,,,,设为面的法向量,则,令得,设与平面所成角为,则,∴直线与平面所成角的正弦值为.18、(1);(2).【解析】(1)由正弦定理化边为角后,结合两角和的正弦公式、诱导公式可求得;(2)用表示出,然后平方由数量积的运算求得向量的模(线段长度)【详解】(1)因为,所以由正弦定理可得,即,因为,所以,,∵,故;(2)由,得,所以,所以.19、(1);(2)0【解析】(1)由题意得,则可得到关于实数的方程组,求解方程组,即可求得的值;(2)结合(1)中的值得出函数的解析式,即可利用导数求得函数的极小值.【详解】(1),当时,有极大值3,所以,解得,经检验,满足题意,所以;(2)由(1)得,则,令,得或,列表得极小值极大值易知是函数的极小值点,所以当时,函数有极小值0【点睛】本题主要考查了函数的极值的概念,以及利用导数求解函数的极值,考查了学生对极值概念的理解与运算求解能力.20、(1)(2)【解析】(1)由题意求出两直线的交点,再求出所求直线的斜率,用点斜式写出直线的方程;(2)根据题意求出圆的半径,由圆心写出圆的标准方程【小问1详解】解:由题意知,解得,直线和的交点为;设直线的斜率为,与直线垂直,;直线的方程为,化为一般形式为;【小问2详解】解:设圆的半径为,则圆心为到直线的距离为,由垂径定理得,解得,圆的标准方程为21、(1)(2)【解析】(1)求出函数的导函数,根据题意结合导数的几何意义列出方程,解之即可得解;(2)在上恒成立,即在上恒成立,从而,令,利用导数求出函数的最小值,即可求得实数的取值范围【小问1详解】解:,因为函数的图象在点处的切线与直线平行,所以,解得;【小问2详解】解:在上恒成立,即在上恒成立,,,令,则,当时,;当时,,函数在上单调递减,有上单调递增,,,即实数的取值范围是22、(1)证明见解析;(2);(3).【解析】(1)利用余弦定理计算AC,再证明即可推理作答.(2)以点A为原点,射线AB,AC,AF分别为x,y,z轴非负半轴建立空间直角坐标系,借助空间向量计算点C到平面BEF的距离.(3)利用(2)中坐标系,用向量数量积计算两平面夹角余弦值,进而求解作答.小问1详解】在中,AB=1,BC=2,∠ABC=60°,由余弦定理得,,即,有,则,即,因平面ABCD⊥平面ACEF,平面平面,平面,于是得平面,又平面,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论