日照市重点中学2023年高二数学第一学期期末教学质量检测模拟试题含解析_第1页
日照市重点中学2023年高二数学第一学期期末教学质量检测模拟试题含解析_第2页
日照市重点中学2023年高二数学第一学期期末教学质量检测模拟试题含解析_第3页
日照市重点中学2023年高二数学第一学期期末教学质量检测模拟试题含解析_第4页
日照市重点中学2023年高二数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

日照市重点中学2023年高二数学第一学期期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆,为圆外的任意一点,过点引圆的两条切线、,使得,其中、为切点.在点运动的过程中,线段所扫过图形的面积为()A. B.C. D.2.已知椭圆:的左、右焦点分别为,,点P是椭圆上的动点,,,则的最小值为()A. B.C D.3.如果,,…,是抛物线C:上的点,它们的横坐标依次为,,…,,点F是抛物线C的焦点.若=10,=10+n,则p等于()A.2 B.C. D.44.德国数学家高斯是近代数学奠基者之一,有“数学王子”之称,在历史上有很大的影响.他幼年时就表现出超人的数学天才,10岁时,他在进行的求和运算时,就提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成,因此,此方法也称之为高斯算法.已知数列,则()A.96 B.97C.98 D.995.双曲线的离心率的取值范围为,则实数的取值范围为()A. B.C. D.6.若椭圆上一点到C的两个焦点的距离之和为,则()A.1 B.3C.6 D.1或37.已知随机变量服从正态分布,若,则()A.0.2 B.0.24C.0.28 D.0.328.在如图所示的茎叶图中,若甲组数据的众数为16,则乙组数据的平均数为()A.12 B.10C.8 D.69.我们知道∶用平行于圆锥母线的平面(不过顶点)截圆锥,则平面与圆锥侧面的交线是抛物线一部分,如图,在底面半径和高均为2的圆锥中,AB、CD是底面圆O的两条互相垂直的直径,E是母线PB的中点,已知过CD与E的平面与圆锥侧面的交线是以E为顶点的圆锥曲线的一部分,则该圆锥曲线的焦点到其准线的距离等于()A. B.C. D.110.设平面的法向量为,平面的法向量为,若,则的值为()A.-5 B.-3C.1 D.711.在平面直角坐标系中,双曲线C:的左焦点为F,过F且与x轴垂直的直线与C交于A,B两点,若是正三角形,则C的离心率为()A. B.C. D.12.直线的倾斜角的大小为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知过点作抛物线的两条切线,切点分别为A、B,直线经过抛物线C的焦点F,则___________14.已知点在圆C:()内,过点M的直线被圆C截得的弦长最小值为8,则______15.已知函数,有且只有一个零点,则实数的取值范围是_______.16.直线与椭圆交于,两点,线段的中点为,设直线的斜率为,直线(其中为坐标原点)的斜率为,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在等差数列{an}中,a3+a4=15,a2a5=54,公差d<0.(1)求数列{an}的通项公式an;(2)求数列的前n项和Sn的最大值及相应的n值18.(12分)如图,在四棱锥中,底面ABCD是矩形,M是PA的中点,N是BC的中点,平面ABCD,且,(1)求证:∥平面PCD;(2)求平面MBC与平面ABCD夹角的余弦值19.(12分)已知点,圆C:,l:.(1)若直线过点M,且被圆C截得的弦长为,求该直线的方程;(2)设P为已知直线l上的动点,过点P向圆C作一条切线,切点为Q,求的最小值.20.(12分)已知,:,:.(1)若,为真命题,为假命题,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围21.(12分)如图,在直角梯形中,.直角梯形通过直角梯形以直线为轴旋转得到,且使得平面平面.M为线段的中点,P为线段上的动点(1)求证:;(2)当点P满足时,求证:直线平面;(3)是否存在点P,使直线与平面所成角的正弦值为?若存在,试确定P点的位置;若不存在,请说明理由22.(10分)已知,(1)若,p且q为真命题,求实数x的取值范围;(2)若p是q的充分条件,求实数m的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】连接、、,分析可知四边形为正方形,求出点的轨迹方程,分析可知线段所扫过图形为是夹在圆和圆的圆环,利用圆的面积公式可求得结果.【详解】连接、、,由圆的几何性质可知,,又因为且,故四边形为正方形,圆心,半径为,则,故点的轨迹方程为,所以,线段扫过的图形是夹在圆和圆的圆环,故在点运动的过程中,线段所扫过图形的面积为.故选:D.2、A【解析】由椭圆的定义可得;利用基本不等式,若,则,当且仅当时取等号.【详解】根据椭圆的定义可知,,即,因为,,所以,当且仅当,时等号成立.故选:A3、A【解析】根据抛物线定义得个等式,相加后,利用已知条件可得结果.【详解】抛物线C:的准线为,根据抛物线的定义可知,,,,,所以,所以,所以,所以.故选:A【点睛】关键点点睛:利用抛物线的定义解题是解题关键,属于基础题.4、C【解析】令,利用倒序相加原理计算即可得出结果.【详解】令,,两式相加得:,∴,故选:C5、C【解析】分析可知,利用双曲线的离心率公式可得出关于的不等式,即可解得实数的取值范围.【详解】由题意有,,则,解得:故选:C.6、B【解析】讨论焦点的位置利用椭圆定义可得答案.【详解】若,则由得(舍去);若,则由得故选:B.7、C【解析】依据正态曲线的对称性即可求得【详解】由随机变量服从正态分布,可知正态曲线的对称轴为直线由,可得则,故故选:C8、A【解析】根据众数的概念,求得的值,再根据平均数的计算公式,即可求解.【详解】由题意,甲组数据的众数为16,得,所以乙组数据的平均数为故选:A.9、C【解析】由圆锥的底面半径和高及E的位置可得,建立适当的平面直角坐标系,可得C的坐标,设抛物线的方程,将C的坐标代入求出抛物线的方程,进而可得焦点到其准线的距离【详解】设AB,CD的交点为,连接PO,由题意可得PO⊥面AB,所以PO⊥OB,由题意OB=OP=OC=2,因为E是母线PB的中点,所以,由题意建立适当的坐标系,以BP为y轴以OE为x轴,E为坐标原点,如图所示∶可得∶,设抛物线的方程为y2=mx,将C点坐标代入可得,所以,所以抛物线的方程为∶,所以焦点坐标为,准线方程为,所以焦点到其准线的距离为故选:C10、C【解析】根据,可知向量建立方程求解即可.【详解】由题意根据,可知向量,则有,解得.故选:C11、A【解析】设双曲线半焦距为c,求出,由给定的正三角形建立等量关系,结合计算作答.【详解】设双曲线半焦距为c,则,而轴,由得,从而有,而是正三角形,即有,则,整理得,因此有,而,解得,所以C的离心率为.故选:A12、B【解析】由直线方程,可知直线的斜率,设直线的倾斜角为,则,又,所以,故选二、填空题:本题共4小题,每小题5分,共20分。13、64【解析】用字母进行一般化研究,先求出切点弦方程,再联立化简,最后代入数据计算【详解】设,点处的切线方程为联立,得由,得即,解得所以点处的切线方程为,整理得同理,点处的切线方程为设为两切线的交点,则所以在直线上即直线AB的方程为又直线AB经过焦点所以,即联立得所以所以本题中所以故答案为:64【点睛】结论点睛:过点作抛物线的两条切线,切点弦的方程为14、【解析】根据点与圆的位置关系,可求得r的取值范围,再利用过圆内一点最短的弦,结合弦长公式可得到关于r的方程,求解即可.【详解】由点在圆C:内,且所以,又,解得过圆内一点最短的弦,应垂直于该定点与圆心的连线,即圆心到直线的距离为又,所以,解得故答案为:15、【解析】由题知方程,,有且只有一个零点,进而构造函数,利用导数研究函数单调性与函数值得变化情况,作出函数的大致图像,数形结合求解即可.【详解】解:因为函数,,有且只有一个零点,所以方程,,有且只有一个零点,令,则,,令,则所以为上的单调递减函数,因为,所以当时,;当时,;所以当时,;当时,,所以在上单调递增,在上单调递减,因为当趋近于时,趋近于,当趋近于时,趋近于,且,时,,故的图像大致如图所示,所以方程,,有且只有一个零点等价于或.所以实数的取值范围是故答案为:16、##-0.0625【解析】使用点差法即可求解﹒【详解】设,,则①-②得:,即,即.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)当或11时,最大值为55.【解析】(1)根据等差数列的通项公式得方程组,解这个方程组得公差和首项,从而得数列的通项公式n.(2)等差数列的前项和是关于的二次式,将这个二次式配方即可得最大值.【详解】(1)由题设,故(舍,此时)或.故,故.(2)由(1)可得,因为,对称方程为,故当或时,取最大值,此时最大值为.18、(1)详见解析;(2)【解析】(1)取PD的中点E,连接ME,CE,易证四边形是平行四边形,得到,再利用线面平行的判定定理证明;(2)建立空间直角坐标系,求得平面MBC的一个法向量,易知平面ABCD的一个法向量为:,由求解.【小问1详解】证明:如图所示:取PD的中点E,连接ME,CE,因为底面ABCD是矩形,M是PA的中点,N是BC的中点,所以,所以四边形是平行四边形,所以,又平面PCD,平面PCD,所以∥平面PCD;【小问2详解】建立如图所示空间直角坐标系:则,所以,设平面MBC的一个法向量为,则,即,令,得,易知平面ABCD的一个法向量为:,所以,所以平面MBC与平面ABCD的夹角的余弦值为.19、(1)或(2)【解析】(1)求出圆的圆心到直线的距离,再利用垂径定理计算列方程计算;(2)由题意可知当最小时,连线与已知直线垂直,求出,再利用计算即可.【小问1详解】由题意可知圆的圆心到直线的距离为①当直线斜率不存在时,圆的圆心到直线距离为1,满足题意;②当直线斜率存在时,设过的直线方程为:,即由点到直线距离公式列方程得:解得综上,过的直线方程为或.【小问2详解】由题意可知当最小时,连线与已知直线垂直,由勾股定理知:,所以的最小值为.20、(1)(2)【解析】(1)化简命题p,将m=3代入求出命题q,再根据或、且连接的命题真假确定p,q真假即可得解;(2)由给定条件可得p是q的必要不充分条件,再列式计算作答.【小问1详解】依题意,:,:,得:.当时,:,因为真命题,为假命题,则与一真一假,当真假时,即或,无解,当假真时,即或,解得或,综上得:或,所以实数x的取值范围是;【小问2详解】因是的充分不必要条件,则p是q的必要不充分条件,于是得,解得,所以实数m的取值范围是21、(1)见解析(2)见解析(3)存在点P,【解析】(1)建立空间坐标系求两直线的方向向量,根据数量积为0可证的结论;(2)求得直线的方向向量和面的法向量,证得两向量垂直即可;(3)求直线的方向向量和面的法向量的夹角即可.【小问1详解】由已知可得,,,两两垂直,以A为原点,,,所在直线为轴,轴,轴建立如图空间直角坐标系,因为,所以,,,,,,,,,∴,,∴,,即,,∴平面又∵平面,∴【小问2详解】设点坐标为,则,∵,∴,,,解得:,,,即设平面的一个法向量,∵,,∴,即,令,则,,得又,∴∴直线平面【小问3详解】设,则,设的一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论