版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古五原县第一中学2023年高二数学第一学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设R,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知双曲线,且三个数1,,9成等比数列,则下列结论正确的是()A.的焦距为 B.的渐近线方程为C.的离心率为 D.的虚轴长为3.已知直线与圆相交于两点,当的面积最大时,的值是()A. B.C. D.4.某校为了解学生学习的情况,采用分层抽样的方法从高一人、高二人、高三人中,抽取人进行问卷调查.已知高二被抽取的人数为人,那么高三被抽取的人数为()A. B.C. D.5.设,直线与直线平行,则()A. B.C. D.6.已知实数,满足约束条件则的最大值为()A.10 B.8C.4 D.207.等比数列的第4项与第6项分别为12和48,则公比的值为()A. B.2C.或2 D.或8.已知等差数列的前n项和为Sn,首项a1=1,若,则公差d的取值范围为()A. B.C. D.9.已知集合,则()A. B.C. D.10.某家庭准备晚上在餐馆吃饭,他们查看了两个网站关于四家餐馆的好评率,如下表所示,考虑每家餐馆的总好评率,他们应选择()网站①评价人数网站①好评率网站②评价人数网站②好评率餐馆甲100095%100085%餐馆乙1000100%200080%餐馆丙100090%100090%餐馆丁200095%100085%A.餐馆甲 B.餐馆乙C.餐馆丙 D.餐馆丁11.在长方体中,,,点分别在棱上,,,则()A. B.C. D.12.圆与圆的位置关系为()A.内切 B.相交C.外切 D.外离二、填空题:本题共4小题,每小题5分,共20分。13.甲、乙两人下棋,甲获胜的概率为,乙获胜的概率为,则甲、乙两人下成和棋的概率为___________.14.已知递增数列共有2021项,且各项均不为零,,如果从中任取两项,当时,仍是数列中的项,则的范围是________________,数列的所有项和________15.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为____________.16.两条平行直线与的距离是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知双曲线的右焦点与抛物线的焦点相同,且过点.(1)求双曲线渐近线方程;(2)求抛物线的标准方程.18.(12分)将离心率相同的两个椭圆如下放置,可以形成一个对称性很强的几何图形,现已知.(1)若在第一象限内公共点的横坐标为1,求的标准方程;(2)假设一条斜率为正的直线与依次切于两点,与轴正半轴交于点,试求的最大值及此时的标准方程.19.(12分)如图,在△ABC中,内角A、B、C的对边分别为a、b、c.已知b=3,c=6,,且AD为BC边上的中线,AE为∠BAC的角平分线(1)求及线段BC的长;(2)求△ADE的面积20.(12分)已知直线过点,且被两条平行直线,截得的线段长为.(1)求的最小值;(2)当直线与轴平行时,求的值.21.(12分)如图,在四棱锥中,底面ABCD,,,,(1)证明:;(2)当PB的长为何值时,直线AB与平面PCD所成角的正弦值为?22.(10分)在复数集C内方程有六个根分别为(1)解出这六个根;(2)在复平面内,这六个根对应的点分别为A,B,C,D,E,F;求多边形ABCDEF的面积
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据不等式性质判断即可.【详解】若“”,则成立;反之,若,当,时,不一定成立.如,但.故“”是“”的充分不必要条件.故答案为:A.【点睛】本题考查充分条件、必要调价的判断,考查不等式与不等关系,属于基础题.2、D【解析】先求得的值,然后根据双曲线的知识对选项进行分析,从而确定正确答案.【详解】方程表示双曲线,则,成等比数列,则,所以双曲线方程为,所以,故双曲线的焦距为,A选项错误.渐近线方程为,B选项错误.离心率,C选项错误.虚轴长,D选项正确.故选:D3、C【解析】利用点到直线的距离公式和弦长公式可以求出的面积是关于的一个式子,即可求出答案.【详解】圆心到直线的距离,弦长为..当,即时,取得最大值.故选:C.4、C【解析】利用分层抽样求出的值,进而可求得高三被抽取的人数.【详解】由分层抽样可得,可得,设高三所抽取的人数为,则,解得.故选:C.5、C【解析】根据直线平行求解即可.【详解】因为直线与直线平行,所以,即,经检验,满足题意.故选:C6、A【解析】根据约束条件作出可行域,再将目标函数表示的一簇直线画出向可行域平移即可求解.【详解】作出可行域,如图所示转化为,令则,作出直线并平移使它经过可行域点,经过时,,解得,所以此时取得最大值,即有最大值,即故选:A.7、C【解析】根据等比数列的通项公式计算可得;详解】解:依题意、,所以,即,所以;故选:C8、A【解析】该等差数列有最大值,可分析得,据此可求解.【详解】,故,故有故d取值范围为.故选:A9、C【解析】解一元二次不等式求集合A,再由集合的交运算求即可.【详解】由题设,,∴.故选:C.10、D【解析】根据给定条件求出各餐馆总好评率,再比较大小作答.【详解】餐馆甲的总好评率为:,餐馆乙的总好评率为:,餐馆丙的好评率为:,餐馆丁的好评率为:,显然,所以餐馆丁的总好评率最高.故选:D11、D【解析】依题意可得,从而得到,即可得到,从而得解;【详解】解:由长方体的性质可得,又,所以,因为,所以,所以,因为,所以;故选:D12、C【解析】将圆的一般方程化为标准方程,根据圆心距和半径的关系,判断两圆的位置关系.【详解】圆的标准方程为,圆的标准方程为,两圆的圆心距为,即圆心距等于两圆半径之和,故两圆外切,故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】直接根据概率和为1计算得到答案.【详解】.故答案为:.14、①.②.1011【解析】根据题意得到,得到,,,,进而得到,从而即可求得的值.【详解】由题意,递增数列共有项,各项均不为零,且,所以,所以的范围是,因为时,仍是数列中的项,即,且上述的每一项均在数列中,所以,,,,即,所以,所以.故答案为:;.15、160【解析】∵某个年级共有980人,要从中抽取280人,∴抽取比例为,∴此样本中男生人数为,故答案为160.考点:本题考查了分层抽样的应用点评:掌握分层抽样的概念是解决此类问题的关键,属基础题16、5【解析】根据两平行直线,可求得a值,根据两平行线间距离公式,即可得答案.【详解】因为两平行直线与,所以,解得,所以两平行线的距离.故答案为:5三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)将已知点代入双曲线方程,然后可得;(2)由双曲线右焦点与抛物线的焦点相同可解.【小问1详解】因为双曲线过点,所以所以,得又因为,所以所以双曲线的渐近线方程【小问2详解】由(1)得所以所以双曲线的右焦点是所以抛物线的焦点是所以,所以所以抛物线的标准方程18、(1)(2);【解析】(1)设,将点代入得出的标准方程;(2)联立与直线的方程,得出两点的坐标,进而得出,再结合导数得出的最大值及此时的标准方程.【小问1详解】由题意得:在第一象限的公共点为设,则有:的标准方程为:;【小问2详解】设y=kx+m则①,则②,,,又,由①有代入①有,令,则令,在单调递增,在单调递减,此时,则,代入②得,综上:的最大值2,此时.19、(1),BC=6(2)【解析】(1)利用正弦定理、二倍角公式化简已知条件,求得,结合余弦定理求得,也即.(2)求得三角形的面积,结合角平分线、中线的性质求得三角形的面积.小问1详解】∵,∴,∴,∴由余弦定理得(负值舍去),即BC=6.【小问2详解】∵,,∴,∴,∵AE平分∠BAC,,由正弦定理得:,其中,∴,∵AD为BC边的中线,∴,∴.20、(1)3;(2)5【解析】(1)由题可得和的距离即为的最小值;(2)可得此时直线的方程为,求出交点坐标即可求出距离.【详解】(1)由题可得当且时,取得最小值,即和的距离,由两平行线间的距离公式,得,所以的最小值为3.(2)当直线与轴平行时,方程为,设直线与直线,分别交于点,,则,,所以,即,所以.21、(1)证明见解析(2)【解析】(1)由线面垂直的判断定理证明平面PAB,再由线面垂直的性质定理即可证明;(2)以A为原点,AB,AC,AP分别为x轴,y轴,z轴,建立空间直角坐标系,设,求出平面PCD的法向量的坐标,根据直线AB与平面PCD所成角的正弦值为,利用向量法可求得,从而可求解PB的长.【小问1详解】证明:因为底面ABCD,又平面ABCD,所以,又,,AB,平面PAB,所以平面PAB,又平面PAB,所以;小问2详解】解:因为底面ABCD,,所以以A为原点,AB,AC,AP分别为x轴,y轴,z轴,建立如图所示空间直角坐标系,因为,,,所以,则,,所以,,,,设,则,,,设平面PCD的法向量为,则,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年旅游服务代理合同样本
- 2025年度绿植花卉租赁与城市景观提升合同范本4篇
- 2025年度绿化工程环境保护与节能减排合同范本4篇
- 2025版绿色建筑项目租赁与能源管理合同4篇
- 2025年度个人二手房交易安全协议范本4篇
- 个人间短期资金周转合同书版
- 个人买卖合同范文(2024版)
- 二零二五年度风力发电机组安装及运营维护协议3篇
- 2025年度个税起征点调整下签劳务合同税务筹划合作协议
- 二零二五年度素食餐饮品牌授权合作合同
- 车站值班员(中级)铁路职业技能鉴定考试题及答案
- 极简统计学(中文版)
- JTG∕T E61-2014 公路路面技术状况自动化检测规程
- 高中英语短语大全(打印版)
- 2024年资格考试-对外汉语教师资格证笔试参考题库含答案
- 软件研发安全管理制度
- 三位数除以两位数-竖式运算300题
- 寺院消防安全培训课件
- 比摩阻-管径-流量计算公式
- GB/T 42430-2023血液、尿液中乙醇、甲醇、正丙醇、丙酮、异丙醇和正丁醇检验
- 五年级数学应用题100道
评论
0/150
提交评论