




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省瓦房店高级中学2023年高二上数学期末考试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数f(x)=xex的单调增区间为()A.(-∞,-1) B.(-∞,e)C.(e,+∞) D.(-1,+∞)2.在下列各图中,每个图的两个变量具有相关关系的图是()A.(1)(2) B.(1)(3)C.(2) D.(2)(3)3.在数列中,若,则称为“等方差数列”,下列对“等方差数列”的判断,其中不正确的为()A.若是等方差数列,则是等差数列 B.若是等方差数列,则是等方差数列C.是等方差数列 D.若是等方差数列,则是等方差数列4.设双曲线的实轴长为8,一条渐近线为,则双曲线的方程为()A. B.C. D.5.正方体的表面积为,则正方体外接球的表面积为(
)A. B.C. D.6.设双曲线C:的左、右焦点分别为,点P在双曲线C上,若线段的中点在y轴上,且为等腰三角形,则双曲线C的离心率为()A B.2C. D.7.数列1,-3,5,-7,9,…的一个通项公式为A. B.C. D.8.方程表示的曲线为焦点在y轴上的椭圆,则k的取值范围是()A. B.C.或 D.9.已知,是圆上的两点,是直线上一点,若存在点,,,使得,则实数的取值范围是()A. B.C. D.10.命题“,”否定是()A., B.,C., D.,11.有7名同学参加百米竞赛,预赛成绩各不相同,取前3名参加决赛,小明同学已经知道了自己的成绩,为了判断自己是否能进入决赛,他还需要知道7名同学成绩的()A.平均数 B.众数C.中位数 D.方差12.饕餮纹是青铜器上常见的花纹之一,最早见于长江中下游地区的良渚文化陶器和玉器上,盛行于商代至西周早期.将青铜器中的饕餮纹的一部分画到方格纸上,如图所示,每个小方格的边长为一个单位长度,有一点从点出发,每次向右或向下跳一个单位长度,且向右或向下跳是等可能的,那么点经过3次跳动后恰好是沿着饕餮纹的路线到达点的概率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若平面内两条直线,平行,则实数______14.曲线在点处的切线的方程为__________.15.如图是某赛季CBA广东东莞银行队甲、乙两名篮球运动员每场比赛得分的茎叶图,则甲、乙比赛得分的中位数之和是______.16.已知四面体中,,分别在,上,且,,若,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知:在四棱锥中,底面为正方形,侧棱平面,点为中点,.(1)求证:平面平面;(2)求直线与平面所成角大小;(3)求点到平面的距离.18.(12分)已知.(1)求在上的单调递增区间;(2)已知锐角内角,,的对边长分别是,,,若,.求面积的最大值.19.(12分)已知圆内有一点,过点P作直线l交圆C于A,B两点.(1)当P为弦的中点时,求直线l的方程;(2)若直线l与直线平行,求弦的长.20.(12分)在平面直角坐标系中,圆C:,直线l:(1)若直线l与圆C相切于点N,求切点N的坐标;(2)若,直线l上有且仅有一点A满足:过点A作圆C的两条切线AP、AQ,切点分别为P,Q,且使得四边形APCQ为正方形,求m的值21.(12分)森林资源是全人类共有的宝贵财富,其在改善环境,保护生态可持续发展方面发挥着重要的作用.2020年12月12日,主席在全球气候峰会上通过视频发表题为《继往开来,开启全球应对气候变化的新征程》的重要讲话,宣布“到2030年,我国森林蓄积量将比2005年增加60亿立方米”.为了实现这一目标,某地林业管理部门着手制定本地的森林蓄积量规划.经统计,本地2020年底的森林蓄积量为120万立方米,森林每年以25%的增长率自然生长,而为了保证森林通风和发展经济的需要,每年冬天都要砍伐掉万立方米的森林.设为自2021年开始,第年末的森林蓄积量.(1)请写出一个递推公式,表示二间的关系;(2)将(1)中的递推公式表示成的形式,其中,为常数;(3)为了实现本地森林蓄积量到2030年底翻两番的目标,每年的砍伐量最大为多少万立方米?(精确到1万立方米)(可能用到的数据:,,)22.(10分)已知抛物线C:经过点(1,-1).(1)求抛物线C的方程及其焦点坐标;(2)过抛物线C上一动点P作圆M:的一条切线,切点为A,求切线长|PA|的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】求出,令可得答案.【详解】由已知得,令,得,故函数f(x)=xex的单调增区间为(-1,+∞).故选:D.2、D【解析】根据图形可得(1)具有函数关系;(2)(3)的散点分布在一条直线或曲线附近,具有相关关系;(4)的散点杂乱无章,不具有相关关系.【详解】对(1),所有的点都在曲线上,故具有函数关系;对(2),所有的散点分布在一条直线附近,具有相关关系;对(3),所有的散点分布在一条曲线附近,具有相关关系;对(4),所有的散点杂乱无章,不具有相关关系.故选:D.3、B【解析】根据等方差数列的定义逐一进行判断即可【详解】选项A中,符合等差数列的定义,所以是等差数列,A正确;选项B中,不是常数,所以不是等方差数列,选项B错误;选项C中,,所以是等方差数列,C正确;选项D中,所以是等方差数列,D正确故选:B4、D【解析】双曲线的实轴长为,渐近线方程为,代入解析式即可得到结果.【详解】双曲线的实轴长为8,即,,渐近线方程为,进而得到双曲线方程为.故选:D.5、B【解析】由正方体表面积求得棱长,再求得正方体的对角线长,即为外接球的直径,从而可得球表面积【详解】设正方体棱长为,由得,正方体对角线长,所以其外接球半径为,球表面积为故选:B6、A【解析】根据是等腰直角三角形,再表示出的长,利用三角形的几何性质即可求得答案.【详解】线段的中点在y轴上,设的中点为M,因为O为的中点,所以,而,则,为等腰三角形,故,由,得,又为等腰直角三角形,故,即,解得,即,故选:A.7、C【解析】观察,奇偶相间排列,偶数位置为负,所以为,数字是奇数,满足2n-1,所以可求得通项公式.【详解】由符号来看,奇数项为正,偶数项为负,所以符号满足,由数值1,3,5,7,9…显然满足奇数,所以满足2n-1,所以通项公式为,选C.【点睛】本题考查观察法求数列的通项公式,解题的关键是培养对数字的敏锐性,属于基础题.8、D【解析】根据曲线为焦点在y轴上的椭圆可得出答案.【详解】因为方程表示的曲线为焦点在y轴上的椭圆,所以,解得.故选:D.9、B【解析】确定在以为直径的圆上,,根据均值不等式得到圆上的点到的最大距离为,得到,解得答案.【详解】,故在以为直径的圆上,设中点为,则,圆上的点到的最大距离为,,当时等号成立.直线到原点的距离为,故.故选:B.10、D【解析】根据含有量词的命题的否定即可得出结论.【详解】命题为全称命题,则命题的否定为:,.故选:D.11、C【解析】根据中位数的性质,结合题设按成绩排序7选3,即可知还需明确的成绩数据信息.【详解】由题设,7名同学参加百米竞赛,要取前3名参加决赛,则成绩从高到低排列,确定7名同学成绩的中位数,即第3名的成绩便可判断自己是否能进入决赛.故选:C.12、B【解析】利用古典概型的概率求解.【详解】解:点从点出发,每次向右或向下跳一个单位长度,跳3次,则样本空间{(右,右,右),(右,右,下),(右,下,右),(下,右,右),(右,下,下),(下,右,下),(下,下,右),(下,下,下)},记“3次跳动后,恰好是沿着饕餮纹的路线到达点B”为事件,则{(下,下,右)},由古典概型的概率公式可知故选:B二、填空题:本题共4小题,每小题5分,共20分。13、-1或2【解析】根据两直线平行,利用直线平行的条件列出方程解得答案.【详解】∵,∴,解得或,经验证都符合题意,故答案为:-1或214、【解析】求出导函数,得切线斜率后可得切线方程【详解】,∴切线斜率为,切线方程为故答案为:15、58【解析】分别将甲、乙两名运动员的得分按小到大或者大到小排序,分别确定中位数,再相加即可【详解】因为甲、乙两名篮球运动员各参赛11场,故中位数是第6个数甲的得分按小到大排序后为:12,22,23,32,33,34,35,40,43,44,46,所以,中位数为34乙的得分按小到大排序后为:12,13,21,22,23,24,31,31,34,40,49所以,中位数为24所以,中位数之和为34+24=58,故答案为:5816、【解析】连接,根据题意,结合空间向量加减法运算求解即可.【详解】解:连接∵四面体中,,分别在,上,且,∴∴∴.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2);(3).【解析】(1)以AB所在的直线为x轴,以AD所在的直线为y轴,以AP所在的直线为z轴,建立如图所示的直角坐标系,求出平面PCD的法向量为,平面的法向量为,即得证;(2)设直线与平面所成角为,利用向量法求解;(3)利用向量法求点到平面的距离.【小问1详解】证明:PA平面ABCD,ABCD为正方形,以AB所在的直线为x轴,以AD所在的直线为y轴,以AP所在的直线为z轴,建立如图所示的直角坐标系.由已知可得A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0),P(0,0,1)M为PD的中点,,所以,,,所以,又PDAM,,平面PCDAM平面PCD.平面PCD的法向量为.设平面的法向量为,,令,则,..平面MAC平面PCD.【小问2详解】解:设直线与平面所成角为,由(1)可得:平面PCD的法向量为,,,即直线与平面所成角大小.【小问3详解】解:,设点到平面的距离为,.点到平面的距离为.18、(1);(2).【解析】(1)首先根据三角函数恒等变换得到,再求其单调增区间即可.(2)根据得到,根据余弦定理和基本不等式得到,结合三角形面积公式计算即可.【小问1详解】由题意.由,得,令,得,所以在上的单调递增区间是【小问2详解】因为,所以,得,又C是锐角,所以,由余弦定理:,得,所以,且当时等号成立所以,故面积最大值为19、(1)(2)【解析】(1)由题意,,求出直线l的斜率,利用点斜式即可求解;(2)由题意,利用点斜式求出直线l的方程,然后由点到直线的距离公式求出弦心距,最后根据弦长公式即可求解.小问1详解】解:由题意,圆心,P为弦的中点时,由圆的性质有,又,所以,所以直线l的方程为,即;【小问2详解】解:因为直线l与直线平行,所以,所以直线的方程为,即,因为圆心到直线的距离,又半径,所以由弦长公式得.20、(1)或(2)3.【解析】(1)设切点坐标,由切点和圆心连线与切线垂直以及切点在圆上建立关系式,求解切点坐标即可;(2)由圆的方程可得圆心坐标及半径,由APCQ为正方形,可得|AC|=可得圆心到直线的距离为,可得m的值【小问1详解】解:设切点为,则有,解得:或x0=-2+1y0=-2,所以切点的坐标为或【小问2详解】解:圆C:的圆心(1,0),半径r=2,设,由题意可得,由四边形APCQ为正方形,可得|AC|=,即,由题意直线l⊥AC,圆C:(x﹣1)2+y2=4,则圆心(1,0)到直线的距离,可得,m>0,解得m=3.21、(1);(2).;(3)19万立方米.【解析】(1)由题意得到;(2)若递推公式写成,则,再与递推公式比较系数;(3)若实现翻两番的目标,则,根据递推公式,计算的最大值.【详解】解:(1)由题意,得,并且.①(2)将化成,②比较①②的系数,得解得所以(1)中的递推公式可以化为.(3)因为,且,所以,由(2)可知,所以,即数列是以为首项,为公比的等比数列,其通项公式:,所以.到2030年底的森林蓄积量为该数列的第10项,即.由题意,森林蓄积量到2030年底要达到翻两番的目标,所以,即.即.解得.所以每年的砍伐量最大为19万立方米.【点睛】方法点睛:递推公式求通项公式,有以下几种方法:
型如:的数列的递推公式,采用累加法求通项;
形如:的数列的递推公式,采用累乘法求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电线电缆维修服务协议
- 定制家具设计建议协议
- 双语客运值班员客运值班员岗位资格要求课件
- 铁路市场营销市场调查的类型和内容课件
- 水泥混凝土路面表面功能改善路基路面养护江西交通胡凤辉课
- 中国之治开辟新境界课件
- 个百数表课件
- 【课件】二项分布与超几何分布的应用+课件高二下学期数学人教A版(2019)选择性必修第三册
- 小提琴手劳动合同
- 不说脏话班会课件
- 如何做好我国新药研发的市场筛选
- 《神经外科常用药物》
- 八年级物理下学期期中考试卷
- 厄尔尼诺和拉尼娜现象课件
- 钢结构相关施工质量通病及预防措施
- TDASI 017-2021 门窗填缝砂浆
- 织码匠文字材料语言源码目录
- 葡萄酒购销合同范本(2篇)
- GB/T 37869.10-2019玻璃容器真空凸缘瓶口第10部分:六旋77普通规格
- GB/T 20492-2006锌-5%铝-混合稀土合金镀层钢丝、钢绞线
- 建筑工程施工进度计划网络图和横道图
评论
0/150
提交评论