




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省葫芦岛协作校2023年高二上数学期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.()A.-2 B.0C.2 D.32.下列说法正确的是()A.空间中的任意三点可以确定一个平面B.四边相等的四边形一定是菱形C.两条相交直线可以确定一个平面D.正四棱柱的侧面都是正方形3.已知等差数列,,则公差d等于()A. B.C.3 D.-34.已知椭圆的左右焦点分别为,,点B为短轴的一个端点,则的周长为()A.20 B.18C.16 D.95.设圆:和圆:交于A,B两点,则线段AB所在直线的方程为()A. B.C. D.6.已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,,则当时,n的最大值是()A.8 B.9C.10 D.117.在中,角,,所对的边分别为,,,若,,,则A. B.2C.3 D.8.已知命题“”为真命题,“”为真命题,则()A.为假命题,为真命题 B.为真命题,为真命题C.为真命题,为假命题 D.为假命题,为假命题9.若且,则下列不等式中一定成立的是()A. B.C. D.10.若正三棱柱的所有棱长都相等,D是的中点,则直线AD与平面所成角的正弦值为A. B.C. D.11.下列推理中属于归纳推理且结论正确的是()A.由,求出,,,…,推断:数列的前项和B.由满足对都成立,推断:为奇函数C.由半径为的圆的面积,推断单位圆的面积D.由,,,…,推断:对一切,12.已知为偶函数,且,则___________.二、填空题:本题共4小题,每小题5分,共20分。13.若复数z=为纯虚数(),则|z|=_____.14.已知正方体的棱长为2,E为线段中点,F为线段BC上动点,则(1)的最小值为______;(2)点F到直线DE距离的最小值为______.15.若存在实常数k和b,使得函数F(x)和G(x)对其公共定义域上的任意实数x都满足:F(x)≥kx+b和G(x)≤kx+b恒成立,则称此直线y=kx+b为F(x)和G(x)的“隔离直线”,已知函数f(x)=x2(x∈R),g(x)(x<0),h(x)=2elnx,有下列命题:①F(x)=f(x)﹣g(x)内单调递增;②f(x)和g(x)之间存在“隔离直线”,且b的最小值为﹣4;③f(x)和g(x)之间存在“隔离直线”,且k的取值范围是(﹣4,0];④f(x)和h(x)之间存在唯一的“隔离直线”y=2x﹣e其中真命题为_____(请填所有正确命题的序号)16.如图,在矩形中,,,将沿BD所在的直线进行翻折,得到空间四边形.给出下面三个结论:①在翻折过程中,存在某个位置,使得;②在翻折过程中,三棱锥的体积不大于;③在翻折过程中,存在某个位置,使得异面直线与所成角45°.其中所有正确结论的序号是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知O为坐标原点,双曲线C:(,)的离心率为,点P在双曲线C上,点,分别为双曲线C的左右焦点,.(1)求双曲线C的标准方程;(2)已知点,,设直线PA,PB的斜率分别为,.证明:为定值.18.(12分)设点P是曲线上的任意一点,k是该曲线在点P处的切线的斜率(1)求k的取值范围;(2)求当k取最大值时,该曲线在点P处的切线方程19.(12分)设二次函数.(1)若是函数的两个零点,且最小值为.①求证:;②当且仅当a在什么范围内时,函数在区间上存在最小值?(2)若任意实数t,在闭区间上总存在两实数m,n,使得成立,求实数a的取值范围.20.(12分)已知函数(1)若函数的图象在点处的切线与平行,求b的值;(2)在(1)的条件下证明:21.(12分)已知双曲线中心在原点,离心率为2,一个焦点(1)求双曲线方程;(2)设Q是双曲线上一点,且过点F、Q的直线l与y轴交于点M,若,求直线l的方程22.(10分)已知抛物线的焦点为F,点在抛物线上,且在第一象限,的面积为(O为坐标原点).(1)求抛物线的标准方程;(2)经过点的直线与交于,两点,且,异于点,若直线与的斜率存在且不为零,证明:直线与的斜率之积为定值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据定积分公式直接计算即可求得结果【详解】由故选:C2、C【解析】根据立体几何相关知识对各选项进行判断即可.【详解】对于A,根据公理2及推论可知,不共线的三点确定一个平面,故A错误;对于B,在一个平面内,四边相等的四边形才一定是菱形,故B错误;对于C,根据公理2及推论可知,两条相交直线可以确定一个平面,故C正确;对于D,正四棱柱指上、下底面都是正方形且侧棱垂直于底面的棱柱,侧面可以是矩形,故D错误.故选:C3、B【解析】根据题意,利用公式,即可求解.【详解】由题意,等差数列,,可得等差数列的公差.故选:B.4、B【解析】根据椭圆的定义求解【详解】由椭圆方程知,所以,故选:B5、A【解析】将两圆的方程相减,即可求两圆相交弦所在直线的方程.【详解】设,因为圆:①和圆:②交于A,B两点所以由①-②得:,即,故坐标满足方程,又过AB的直线唯一确定,即直线的方程为.故选:A6、B【解析】先求出数列和的通项公式,然后利用分组求和求出,再对进行赋值即可求解.【详解】解:因为数列是以1为首项,2为公差的等差数列所以因为是以1为首项,2为公比的等比数列所以由得:当时,即当时,当时,所以n的最大值是.故选:B.【点睛】关键点睛:本题的关键是利用分组求和求出,再通过赋值法即可求出使不等式成立的的最大值.7、A【解析】利用正弦定理,可直接求出的值.【详解】在中,由正弦定理得,所以,故选A.【点睛】本题考查利用正弦定理求边,要记得正弦定理所适用的基本类型,考查计算能力,属于基础题8、A【解析】根据复合命题的真假表即可得出结果.【详解】若“”为真命题,则为假命题,又“”为真命题,则至少有一个真命题,所以为真命题,即为假命题,为真命题.故选:A9、D【解析】根据不等式的性质即可判断.【详解】对于A,若,则不等式不成立;对于B,若,则不等式不成立;对于C,若均为负值,则不等式不成立;对于D,不等号的两边同乘负值,不等号的方向改变,故正确;故选:D【点睛】本题主要考查不等式的性质,需熟练掌握性质,属于基础题.10、A【解析】建立空间直角坐标系,得到相关点的坐标后求出直线的方向向量和平面的法向量,借助向量的运算求出线面角的正弦值【详解】取AC的中点为坐标原点,建立如图所示的空间直角坐标系设三棱柱的棱长为2,则,∴设为平面的一个法向量,由故令,得设直线AD与平面所成角为,则,所以直线AD与平面所成角的正弦值为故选A【点睛】空间向量的引入为解决立体几何问题提供了较好的方法,解题时首先要建立适当的坐标系,得到相关点的坐标后借助向量的运算,将空间图形的位置关系或数量关系转化为向量的运算处理.在解决空间角的问题时,首先求出向量夹角的余弦值,然后再转化为所求的空间角.解题时要注意向量的夹角和空间角之间的联系和区别,避免出现错误11、A【解析】根据归纳推理是由特殊到一般,推导结论可得结果.【详解】对于A,由,求出,,,…,推断:数列的前项和,是由特殊推导出一般性的结论,且,故A正确;B和C属于演绎推理,故不正确;对于D,属于归纳推理,但时,结论不正确,故D不正确.故选:A.12、8【解析】由已知条件中的偶函数即可计算出结果,【详解】为偶函数,且,.故答案为:8二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用复数z=为纯虚数求出a,即可求出|z|.【详解】z=.由纯虚数的定义知,,解得.所以.故|z|=.故答案为:.14、①.;②..【解析】建立空间直角坐标系.空一:利用空间两点间距离公式,结合平面两点间距离公式进行求解即可;空二:根据空间向量垂直的性质进行求解即可.【详解】建立如图所示的空间直角坐标系,则有.空一:,代数式表示横轴上一点到点和点的距离之和,如下图所示:设关于横轴的对称点为,当线段与横轴的交点为点时,有最小值,最小值为;空二:设,为垂足,则有,,,因为,所以,因此,化简得:,当时,即时,此时,有最小值,即最小值为,故答案为:;【点睛】关键点睛:利用空间向量垂直的性质进行求解是解题的关键.15、①②④【解析】①求出F(x)=f(x)﹣g(x)的导数,检验在x∈(,0)内的导数符号,即可判断;②、③设f(x)、g(x)的隔离直线为y=kx+b,x2≥kx+b对一切实数x成立,即有△1≤0,又kx+b对一切x<0成立,△2≤0,k≤0,b≤0,根据不等式的性质,求出k,b的范围,即可判断②③;④存在f(x)和g(x)的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k.则隔离直线,构造函数,求出函数函数的导数,根据导数求出函数的最值【解答】解:①∵F(x)=f(x)﹣g(x)=x2,∴x∈(,0),F′(x)=2x0,∴F(x)=f(x)﹣g(x)在x∈(,0)内单调递增,故①对;②、③设f(x)、g(x)的隔离直线为y=kx+b,则x2≥kx+b对一切实数x成立,即有△1≤0,k2+4b≤0,又kx+b对一切x<0成立,则kx2+bx﹣1≤0,即△2≤0,b2+4k≤0,k≤0,b≤0,即有k2≤﹣4b且b2≤﹣4k,k4≤16b2≤﹣64k⇒﹣4≤k≤0,同理⇒﹣4≤b≤0,故②对,③错;④函数f(x)和h(x)的图象在x处有公共点,因此存在f(x)和g(x)的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k.则隔离直线方程为y﹣e=k(x),即y=kx﹣ke,由f(x)≥kx﹣ke(x∈R),可得x2﹣kx+ke≥0当x∈R恒成立,则△≤0,只有k=2,此时直线方程为:y=2x﹣e,下面证明h(x)≤2x﹣e,令G(x)=2x﹣e﹣h(x)=2x﹣e﹣2elnx,G′(x),当x时,G′(x)=0,当0<x时,G′(x)<0,当x时,G′(x)>0,则当x时,G(x)取到极小值,极小值是0,也是最小值所以G(x)=2x﹣e﹣g(x)≥0,则g(x)≤2x﹣e,当x>0时恒成立∴函数f(x)和g(x)存在唯一的隔离直线y=2x﹣e,故④正确故答案为:①②④【点睛】本题以命题的真假判断与应用为载体,考查新定义,关键是对新定义的理解,考查函数的求导,利用导数求最值,属于难题.16、②③【解析】在矩形中,过点作的垂线,垂足分别为,对于①,连接,假设存在某个位置,使得,则可得到,进而得矛盾,可判断;对于②在翻折过程中,当平面平面时,三棱锥的体积取得最大值,再根据几何关系计算即可;对于③,由题知,,设平面与平面所成的二面角为,进而得,进而得异面直线与所成角的余弦值的范围为,即可判断.【详解】解:如图1,在矩形中,过点作的垂线,垂足分别为,则在在翻折过程中,形成如图2的几何体,故对于①,连接,假设存在某个位置,使得,由于,,所以平面,所以,这与图1中的与不垂直矛盾,故错误;对于②在翻折过程中,当平面平面时,三棱锥的体积取得最大值,此时,体积为,故三棱锥的体积不大于,故正确;对于③,,,由②的讨论得,所以,所以,设翻折过程中,平面与平面所成的二面角为,所以,故,由于要使直线与为异面直线,所以,所以,所以,所以异面直线与所成角的余弦值的范围为,由于,所以在翻折过程中,存在某个位置,使得异面直线与所成角为45°.故答案为:②③三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)根据题意和双曲线的定义求出,结合离心率求出b,即可得出双曲线的标准方程;(2)设,根据两点的坐标即可求出、,化简计算即可.【小问1详解】由题知:由双曲线的定义知:,又因为,所以,所以所以,双曲线C的标准方程为小问2详解】设,则因为,,所以,所以18、(1)(2)【解析】(1)先求导数再求最值即可求解答案;(2)由(1)确定切点,从而也确定的斜率就可以求切线.【小问1详解】设,因为,所以,所以k的取值范围为【小问2详解】由(1)知,此时,即,所以此时曲线在点P处的切线方程为19、(1)①证明见解析;②(2)【解析】(1)①根据二次函数的性质和一元二次方程的求根公式,求得,即可证得;②由①知,区间,根据二次函数的性质,即可求解.(2)存在两实数,使得成立,转化为在区间上,有成立,设﹐结合二次函数的图象与性质,分类讨论,即可求解.【小问1详解】解:①由题意,函数二次函数,因为最小值为,可得,即,因为,所以根据求根公式得,所以.②由①知,区间因为,对称轴,且函数在区间上存在最小值,所以,因为,所以解得,所以,即a的取值范围为.【小问2详解】解:存在两实数,使得成立,则在区间上,有成立,设﹐函数对称轴为①当即时,在上单调减,,此时;②当即时,,此时③当即时,,此时;④当即时,,此时;综合①②③④得,且最小值为,因为对任意实数t,都有,所以只需,即,所以实数a的取值范围.20、(1);(2)证明见解析.【解析】(1)由题意可得,从而可求出,(2)先构造函数,利用导数可求得对任意恒成立,对任意恒成立,从而
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东女子学院《田径Ⅰ》2023-2024学年第二学期期末试卷
- 内蒙古通辽市科尔沁区第七中学2025年初三下化学试题期中模拟试题含解析
- 张家口市怀来县2025年数学四年级第二学期期末统考试题含解析
- 济宁职业技术学院《文化人类学经典导读》2023-2024学年第二学期期末试卷
- 上海海事职业技术学院《俄罗斯国情文化》2023-2024学年第一学期期末试卷
- 山西艺术职业学院《汽车轻量化技术》2023-2024学年第二学期期末试卷
- 上海外国语大学贤达经济人文学院《卫星导航定位原理与应用》2023-2024学年第二学期期末试卷
- 江西省吉安市遂川中学2025届高三下学期第一次考试语文试题含解析
- 吉林农业大学《血液流变学与人体健康》2023-2024学年第一学期期末试卷
- 辽宁职业学院《农业企业管理学》2023-2024学年第二学期期末试卷
- 浙江绍兴职业技术学院招聘真题2024
- 浙江省外国语实验学校2025届中考化学模拟试卷含解析
- 教学课件-统计学(第三版)袁卫
- 湖北省武汉市2024-2025学年高三下学期2月调研考试英语试题(含解析无听力原文及音频)
- 医院保安员培训
- 依法执业与医疗安全培训课件
- 2024年宁波市消防救援支队社会招录政府专职消防员笔试真题
- Unit 6 Beautiful landscapes Reading 教学设计-2024-2025学年译林版七年级英语下册
- 神经导航在神经外科手术中的应用与经验
- 2024-2025学年湖南省邵阳市新邵县第二中学高二上学期期中考试英语试卷
- 学习通《形势与政策》2025春章节测试答案
评论
0/150
提交评论