专题10幂函数以及函数的应用(解析版)_第1页
专题10幂函数以及函数的应用(解析版)_第2页
专题10幂函数以及函数的应用(解析版)_第3页
专题10幂函数以及函数的应用(解析版)_第4页
专题10幂函数以及函数的应用(解析版)_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题10幂函数以及函数的应用【考点预测】考点一、幂函数概念形如的函数,叫做幂函数,其中为常数.考点诠释:幂函数必须是形如的函数,幂函数底数为单一的自变量,系数为1,指数为常数.例如:等都不是幂函数.考点二、幂函数的图象及性质1.作出下列函数的图象:(1);(2);(3);(4);(5).考点诠释:幂函数随着的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质:(1)所有的幂函数在都有定义,并且图象都过点;(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.2.作幂函数图象的步骤如下:(1)先作出第一象限内的图象;(2)若幂函数的定义域为或,作图已完成;若在或上也有意义,则应先判断函数的奇偶性如果为偶函数,则根据轴对称作出第二象限的图象;如果为奇函数,则根据原点对称作出第三象限的图象.3.幂函数解析式的确定(1)借助幂函数的定义,设幂函数或确定函数中相应量的值.(2)结合幂函数的性质,分析幂函数中指数的特征.(3)如函数是幂函数,求的表达式,就应由定义知必有,即.4.幂函数值大小的比较(1)比较函数值的大小问题一般是利用函数的单调性,当不便于利用单调性时,可与0和1进行比较.常称为“搭桥”法.(2)比较幂函数值的大小,一般先构造幂函数并明确其单调性,然后由单调性判断值的大小.(3)常用的步骤是:①构造幂函数;②比较底的大小;③由单调性确定函数值的大小.考点三、解决实际应用问题的步骤:第一步:阅读理解,认真审题读懂题中的文字叙述,理解叙述所反映的实际背景,领悟从背景中概括出来的数学实质,尤其是理解叙述中的新名词、新概念,进而把握住新信息.第二步:引进数学符号,建立数学模型设自变量为x,函数为y,并用x表示各相关量,然后根据问题已知条件,运用已掌握的数学知识、物理知识及其他相关知识建立函数关系式,将实际问题转化为一个数学问题,实现问题的数学化,即所谓建立数学模型.第三步:利用数学的方法将得到的常规数学问题(即数学模型)予以解答,求得结果.第四步:再转译为具体问题作出解答.【典型例题】例1.(2022·全国·高一单元测试)已知幂函数为奇函数.(1)求函数的解析式;(2)若,求的取值范围.【解析】(1)由题意,幂函数,可得,即,解得或,当时,函数为奇函数,当时,为非奇非偶函数,因为为奇函数,所以.(2)由(1)知,可得在上为增函数,因为,所以,解得,所以的取值范围为.例2.(2022·全国·高一单元测试)已知幂函数为偶函数,(1)求函数的解析式;(2)若函数在上的最大值为2,求实数的值.【解析】(1)因为为幂函数,所以,解得或因为为偶函数,所以,故的解析式;(2)由(1)知,对称轴为,开口向上,当即时,,即;当即时,,即;综上所述:或.例3.(2022·全国·高一课时练习)吉祥物“冰墩墩”在北京2022年冬奥会强势出圈,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每生产万盒,需投入成本万元,当产量小于或等于50万盒时;当产量大于50万盒时,若每盒玩具手办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完(利润=售价-成本,成本=固定成本+生产中投入成本)(1)求“冰墩墩”玩具手办销售利润(万元)关于产量(万盒)的函数关系式;(2)当产量为多少万盒时,该企业在生产中所获利润最大?【解析】(1)当产量小于或等于50万盒时,,当产量大于50万盒时,,故销售利润(万元)关于产量(万盒)的函数关系式为(2)当时,;当时,,当时,取到最大值,为1200.

因为,所以当产量为70万盒时,该企业所获利润最大.例4.(2022·全国·高一课时练习)如图,某日的钱塘江观测信息如下:2017年月日,天气:阴;能见度:1.8千米;时,甲地“交叉潮”形成,潮水匀速奔向乙地;时,潮头到达乙地,形成“一线潮”,开始均匀加速,继续向西;时,潮头到达丙地,遇到堤坝阻挡后回头,形成“回头潮”.按上述信息,小红将“交叉潮”形成后潮头与乙地质检的距离(千米)与时间(分钟)的函数关系用图3表示.其中:“时甲地‘交叉潮’的潮头离乙地12千米”记为点,点坐标为,曲线可用二次函数:,是常数)刻画.(1)求值,并求出潮头从甲地到乙地的速度;(2)时,小红骑单车从乙地出发,沿江边公路以0.48千米分的速度往甲地方向去看潮,问她几分钟与潮头相遇?(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度,是加速前的速度)【解析】(1)到的时间是30分钟,则,即,潮头从甲地到乙地的速度(千米分钟).(2)因潮头的速度为0.4千米分钟,则到时,潮头已前进(千米),此时潮头离乙地(千米),设小红出发分钟与潮头相遇,于是得,解得,所以小红5分钟后与潮头相遇.(3)把,代入,得,解得,,因此,又,则,当潮头的速度达到单车最高速度0.48千米分,即时,,解得,则当时,,即从分钟时)开始,潮头快于小红速度奔向丙地,小红逐渐落后,但小红仍以0.48千米分的速度匀速追赶潮头,设小红离乙地的距离为,则与时间的函数关系式为,当时,,解得:,因此有,最后潮头与小红相距1.8千米,即时,有,解得,(舍去),于是有,小红与潮头相遇后,按潮头速度与潮头并行到达乙地用时(分钟),因此共需要时间为(分钟),所以小红与潮头相遇到潮头离她1.8千米外共需26分钟.例5.(2022·全国·高一课时练习)已知幂函数的定义域为全体实数R.(1)求的解析式;(2)若在上恒成立,求实数k的取值范围.【解析】(1)∵是幂函数,∴,∴或2.当时,,此时不满足的定义域为全体实数R,∴m=2,∴.(2)即,要使此不等式在上恒成立,令,只需使函数在上的最小值大于0.∵图象的对称轴为,故在上单调递减,∴,由,得,∴实数k的取值范围是.【过关测试】一、单选题1.(2022·全国·高一单元测试)若函数的图象经过点,则()A. B.3 C.9 D.8【答案】B【解析】由题意知,所以,即,所以,所以,所以.故选:B2.(2022·全国·高一课时练习)已知,,,,则(

)A. B.C. D.【答案】D【解析】由题得,,,,因为函数在上单调递增,所以.又因为指数函数在上单调递增,所以.故选:D.3.(2022·全国·高一课时练习)已知幂函数的图象过点(9,3),则函数在区间[1,9]上的值域为(

)A.[-1,0] B. C.[0,2] D.【答案】B【解析】解法一:因为幂函数的图象过点,所以,可得,所以,.因为,所以,故.因此,函数在区间[1,9]上的值域为.故选:B.解法二:因为幂函数的图象过点,所以,可得,所以.因为,所以.因为,所以,所以,解得,即函数在区间[1,9]上的值域为.故选:B.4.(2022·全国·高一课时练习)如图所示是函数(且互质)的图象,则(

)A.是奇数且 B.是偶数,是奇数,且C.是偶数,是奇数,且 D.是偶数,且【答案】C【解析】函数的图象关于轴对称,故为奇数,为偶数,在第一象限内,函数是凸函数,故,故选:C.5.(2022·全国·高一期中)幂函数在区间上单调递增,则(

)A.27 B. C. D.【答案】A【解析】由题意,令,即,解得或,当时,可得函数,此时函数在上单调递增,符合题意;当时,可得,此时函数在上单调递减,不符合题意,即幂函数,则.故选:A.6.(2022·全国·高一课时练习)向高为H的水瓶内注水,一直到注满为止,如果注水量V与水深h的函数图象如图所示,那么水瓶的形状大致是(

)A. B. C. D.【答案】B【解析】当容器是圆柱时,容积V=πr2h,r不变,V是h的正比例函数,其图象是过原点的直线,∴选项D不满足条件;由函数图象可以看出,随着高度h的增加V也增加,但随h变大,每单位高度的增加,体积V的增加量变小,图象上升趋势变缓,∴容器平行于底面的截面半径由下到上逐渐变小,∴A、C不满足条件,而B满足条件.故选:B.7.(2022·全国·高一单元测试)某工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂的成本分为以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的费用是每单位元(试剂的总产量为单位,),则要使生产每单位试剂的成本最低,试剂总产量应为(

)A.60单位 B.70单位 C.80单位 D.90单位【答案】D【解析】设每生产单位试剂的成本为,因为试剂总产量为单位,则由题意可知,原料总费用为元,职工的工资总额为元,后续保养总费用为元,则,当且仅当,即时取等号,满足,所以要使生产每单位试剂的成本最低,试剂总产量应为90单位.故选:D.8.(2022·全国·高一课时练习)给出幂函数:①;②;③;④;⑤.其中满足条件的函数的个数是()A.1 B.2 C.3 D.4【答案】A【解析】由题,满足条件表示函数图象在第一象限上凸,结合幂函数的图象特征可知只有④满足.故选:A二、多选题9.(2022·全国·高一课时练习)幂函数在上是增函数,则以下说法正确的是(

)A.B.函数在上单调递增C.函数是偶函数D.函数的图象关于原点对称【答案】ABD【解析】因为幂函数在上是增函数,所以,解得,所以,所以,故为奇函数,函数图象关于原点对称,所以在上单调递增;故选:ABD10.(2022·全国·高一课时练习)几名大学生创业时经过调研选择了一种技术产品,生产此产品获得的月利润(单位:万元)与每月投入的研发经费(单位:万元)有关.已知每月投入的研发经费不高于16万元,且,利润率.现在已投入研发经费9万元,则下列判断正确的是(

)A.此时获得最大利润率 B.再投入6万元研发经费才能获得最大利润C.再投入1万元研发经费可获得最大利润率 D.再投入1万元研发经费才能获得最大利润【答案】BC【解析】当时,,故当时,获得最大利润,为,故B正确,D错误;,当且仅当,即时取等号,此时研发利润率取得最大值2,故C正确,A错误.故选:BC.11.(2022·全国·高一课时练习)(多选)某单位准备印制一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,先收取固定的制版费,再按印刷数量收取印刷费,乙厂直接按印刷数量收取印刷费,甲厂的总费用y1(千元)、乙厂的总费用y2(千元)与印制证书数量x(千个)的函数关系图分别如图中甲、乙所示,则(

)A.甲厂的制版费为1千元,印刷费平均每个为0.5元B.甲厂的总费用y1与证书数量x之间的函数关系式为C.当印制证书数量不超过2千个时,乙厂的印刷费平均每个为1.5元D.当印制证书数量超过2千个时,乙厂的总费用y2与证书数量x之间的函数关系式为【答案】ABCD【解析】由题图知甲厂制版费为1千元,印刷费平均每个为0.5元,故A正确;设甲厂的费用与证书数量满足的函数关系式为,代入点,可得,解得,所以甲厂的费用与证书数量满足的函数关系式为,故B正确;当印制证书数量不超过2千个时,乙厂的印刷费平均每个为元,故C正确;设当时,设与之间的函数关系式为代入点,可得,解得,所以当时,与之间的函数关系式为,故D正确.故选:ABCD.12.(2022·全国·高一课时练习)若函数在定义域内的某区间M是增函数,且在M上是减函数,则称在M上是“弱增函数”,则下列说法正确的是(

)A.若,则不存在区间M使为“弱增函数”B.若,则存在区间M使为“弱增函数”C.若,则为R上的“弱增函数”D.若在区间上是“弱增函数”,则【答案】ABD【解析】对于A:在上为增函数,在定义域内的任何区间上都是增函数,故不存在区间M使为“弱增函数”,A正确;对于B:由对勾函数的性质可知:在上为增函数,,由幂函数的性质可知,在上为减函数,故存在区间使为“弱增函数”,B正确;对于C:为奇函数,且时,为增函数,由奇函数的对称性可知为R上的增函数,为偶函数,其在时为增函数,在时为减函数,故不是R上的“弱增函数”,C错误;对于D:若在区间上是“弱增函数”,则在上为增函数,所以,解得,又在上为减函数,由对勾函数的单调性可知,,则,综上.故D正确.故选:ABD.三、填空题13.(2022·全国·高一单元测试)已知,若函数在上单调递减,且为偶函数,则______.【答案】【解析】由题知:,所以的值可能为,,.当时,为偶函数,符合题意.当时,为奇函数,不符合题意.当时,,定义域为,则为非奇非偶函数,不符合题意.综上,.故答案为:14.(2022·全国·高一课时练习)已知幂函数在上单调递增,则的解析式是_____.【答案】【解析】是幂函数,,解得或,若,则,在上不单调递减,不满足条件;若,则,在上单调递增,满足条件;即.故答案为:15.(2022·全国·高一课时练习)现在有红豆、白豆各若干粒.甲乙两人为了计算豆子的粒数,选用了这样的方法:第一轮甲每次取粒红豆,乙每次取粒白豆,同时进行,当红豆取完时,白豆还剩粒;第二轮,甲每次取粒红豆,乙每次取粒白豆,同时进行,当白豆取完时,红豆还剩粒.则红豆和白豆共有________粒.【答案】【解析】设红豆有粒,白豆有粒,由第一轮结果可知:,整理可得:;由第二轮结果可知:,整理可得:;当时,由得:(舍);当时,由得:(舍);当时,由得:,,即红豆和白豆共有粒.故答案为:.16.(2022·全国·高一期中)已知幂函数的图像关于y轴对称,且在上是减函数,实数满足,则的取值范围是_____.【答案】【解析】幂函数在上是减函数,,解得,,或.当时,为偶函数满足条件,当时,为奇函数不满足条件,则不等式等价为,即,在R上为增函数,,解得:.故答案为:.四、解答题17.(2022·全国·高一课时练习)比较下列各组数的大小:(1),;(2),;(3),,.【解析】(1)因为幂函数在上单调递减,且,所以.(2)因为幂函数在上为增函数,且,,所以,所以,所以.(3),,,因为幂函数在上单调递增,所以.18.(2022·全国·高一单元测试)已知函数,.(1)求方程的解集;(2)定义:.已知定义在上的函数,求函数的解析式;(3)在(2)的条件下,在平面直角坐标系中,画出函数的简图,并根据图象写出函数的单调区间和最小值.【解析】(1)由,得且,解得,;所以方程的解集为(2)由已知得.(3)函数的图象如图实线所示:函数的单调递减区间是,单调递增区间是,其最小值为1.19.(2022·天津市第九十五益中高一期末)已知幂函数的图像经过点(),函数为奇函数.(1)求幂函数的解析式及实数a的值;(2)判断函数f(x)在区间(-1,1)上的单调性,并用的数单调性定义证明【解析】(1)由条件可知,所以,即,,因为是奇函数,所以,即,满足是奇函数,所以成立;(2)由(1)可知,在区间上任意取值,且,,因为,所以,,所以,即,所以函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论