![锂电池基础知识三篇_第1页](http://file4.renrendoc.com/view/939f5b06cf28ef2648d7234e13be1038/939f5b06cf28ef2648d7234e13be10381.gif)
![锂电池基础知识三篇_第2页](http://file4.renrendoc.com/view/939f5b06cf28ef2648d7234e13be1038/939f5b06cf28ef2648d7234e13be10382.gif)
![锂电池基础知识三篇_第3页](http://file4.renrendoc.com/view/939f5b06cf28ef2648d7234e13be1038/939f5b06cf28ef2648d7234e13be10383.gif)
![锂电池基础知识三篇_第4页](http://file4.renrendoc.com/view/939f5b06cf28ef2648d7234e13be1038/939f5b06cf28ef2648d7234e13be10384.gif)
![锂电池基础知识三篇_第5页](http://file4.renrendoc.com/view/939f5b06cf28ef2648d7234e13be1038/939f5b06cf28ef2648d7234e13be10385.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
锂电池基础知识三篇篇一:锂电池基础知识配料基础知识一、电极的组成:1、 正极组成:a、钻酸锂:正极活性物质,锂离子源,为电池提高锂源。b、导电剂:提高正极片的导电性,补偿正极活性物质的电子导电性。提高正极片的电解液的吸液量,增加反应界面,减少极化。c、PVDF粘合剂:将钻酸锂、导电剂和铝箔或铝网粘合在一起。d、正极引线:由铝箔或铝带制成。2、 负极组成:a、 石墨:负极活性物质,构成负极反应的主要物质;主要分为天然石墨和人造石墨两大类。b、 导电剂:提高负极片的导电性,补偿负极活性物质的电子导电性。提高反应深度及利用率。防止枝晶的产生。利用导电材料的吸液能力,提高反应界面,减少极化。(可根据石墨粒度分布选择加或不加)。c、 添加剂:降低不可逆反应,提高粘附力,提高浆料黏度,防止浆料沉淀。d、 水性粘合剂:将石墨、导电剂、添加剂和铜箔或铜网粘合在一起。e、 负极引线:由铜箔或镍带制成。二、 配料目的:配料过程实际上是将浆料中的各种组成按标准比例混合在一起,调制成浆料,以利于均匀涂布,保证极片的一致性。配料大致包括五个过程,即:原料的预处理、掺和、浸湿、分散和絮凝。三、 配料原理:(一)、正极配料原理1、 原料的理化性能。钻酸锂:非极性物质,不规则形状,粒径D50一般为6-8um,含水量<0.2%,通常为碱性,PH值为10-11左右。锰酸锂:非极性物质,不规则形状,粒径D50一般为5-7um,含水量<0.2%,通常为弱碱性,PH值为8左右。导电剂:非极性物质,葡萄链状物,含水量3-6%,吸油值~300,粒径一般为2-5^m;主要有普通碳黑、超导碳黑、石墨乳等,在大批量应用时一般选择超导碳黑和石墨乳复配;通常为中性。(3)PVDF粘合剂:非极性物质,链状物,分子量从300,000到3,000,000不等;吸水后分子量下降,粘性变差。(4)NMP:弱极性液体,用来溶解/溶胀PVDF,同时用来稀释浆料。2、 原料的预处理钻酸锂:脱水。一般用120oC常压烘烤2小时左右。导电剂:脱水。一般用200oC常压烘烤2小时左右。粘合剂:脱水。一般用120-140oC常压烘烤2小时左右,烘烤温度视分子量的大小决定。(4) NMP:脱水。使用干燥分子筛脱水或采用特殊取料设施,直接使用。3、 原料的掺和:(1) 粘合剂的溶解(按标准浓度)及热处理。(2) 钻酸锂和导电剂球磨:使粉料初步混合,钻酸锂和导电剂粘合在一起,提高团聚作用和的导电性。配成浆料后不会单独分布于粘合剂中,球磨时间一般为2小时左右;为避免混入杂质,通常使用玛瑙球作为球磨介子。4、 干粉的分散、浸湿:(1) 原理:固体粉末放置在空气中,随着时间的推移,将会吸附部分空气在固体的表面上,液体粘合剂加入后,液体与气体开始争夺固体表面;如果固体与气体吸附力比与液体的吸附力强,液体不能浸湿固体;如果固体与液体吸附力比与气体的吸附力强,液体可以浸湿固体,将气体挤出。当润湿角<90度,固体浸湿。当润湿角>90度,固体不浸湿。正极材料中的所有组员都能被粘合剂溶液浸湿,所以正极粉料分散相对容易。(2) 分散方法对分散的影响:A、 静置法(时间长,效果差,但不损伤材料的原有结构);B、 搅拌法;自转或自转加公转(时间短,效果佳,但有可能损伤个别材料的自身结构)。1、 搅拌桨对分散速度的影响。搅拌桨大致包括蛇形、蝶形、球形、桨形、齿轮形等。一般蛇形、蝶形、桨型搅拌桨用来对付分散难度大的材料或配料的初始阶段;球形、齿轮形用于分散难度较低的状态,效果佳。2、 搅拌速度对分散速度的影响。一般说来搅拌速度越高,分散速度越快,但对材料自身结构和对设备的损伤就越大。3、 浓度对分散速度的影响。通常情况下浆料浓度越小,分散速度越快,但太稀将导致材料的浪费和浆料沉淀的加重。4、 浓度对粘结强度的影响。浓度越大,柔制强度越大,粘接强度越大;浓度越低,粘接强度越小。5、 真空度对分散速度的影响。高真空度有利于材料缝隙和表面的气体排出,降低液体吸附难度;材料在完全失重或重力减小的情况下分散均匀的难度将大大降低。6、 温度对分散速度的影响。适宜的温度下,浆料流动性好、易分散。太热浆料容易结皮,太冷浆料的流动性将大打折扣。5、稀释。将浆料调整为合适的浓度,便于涂布。(二)、负极配料原理(大致与正极配料原理相同)1、原料的理化性能。(1) 石墨:非极性物质,易被非极性物质污染,易在非极性物质中分散;不易吸水,也不易在水中分散。被污染的石墨,在水中分散后,容易重新团聚。一般粒径D50为20um左右。颗粒形状多样且多不规则,主要有球形、片状、纤维状等。(2) 水性粘合剂(SBR):小分子线性链状乳液,极易溶于水和极性溶剂。(3) 防沉淀剂(CMC):高分子化合物,易溶于水和极性溶剂。(4) 异丙醇:弱极性物质,加入后可减小粘合剂溶液的极性,提高石墨和粘合剂溶液的相容性;具有强烈的消泡作用;易催化粘合剂网状交链,提高粘结强度。乙醇:弱极性物质,加入后可减小粘合剂溶液的极性,提高石墨和粘合剂溶液的相容性;具有强烈的消泡作用;易催化粘合剂线性交链,提高粘结强度(异丙醇和乙醇的作用从本质上讲是一样的,大批量生产时可考虑成本因素然后选择添加哪种)。去离子水(或蒸馏水):稀释剂,酌量添加,改变浆料的流动性。2、 原料的预处理:石墨:A、混合,使原料均匀化,提高一致性。B、300〜400°C常压烘烤,除去表面油性物质,提高与水性粘合剂的相容能力,修圆石墨表面棱角(有些材料为保持表面特性,不允许烘烤,否则效能降低)。水性粘合剂:适当稀释,提高分散能力。3、 掺和、浸湿和分散:石墨与粘合剂溶液极性不同,不易分散。可先用醇水溶液将石墨初步润湿,再与粘合剂溶液混合。应适当降低搅拌浓度,提高分散性。分散过程为减少极性物与非极性物距离,提高势能或表面能,所以为吸热反应,搅拌时总体温度有所下降。如条件允许应该适当升高搅拌温度,使吸热变得容易,同时提高流动性,降低分散难度。搅拌过程如加入真空脱气过程,排除气体,促进固-液吸附,效果更佳。分散原理、分散方法同正极配料中的相关内容,在三、(一)、4中有详细论述,在此不予详细解释。4、 稀释。将浆料调整为合适的浓度,便于涂布。四、配料注意事项:1、 防止混入其它杂质;2、 防止浆料飞溅;3、 浆料的浓度(固含量)应从高往低逐渐调整,以免增加麻烦;4、 在搅拌的间歇过程中要注意刮边和刮底,确保分散均匀;5、 浆料不宜长时间搁置,以免沉淀或均匀性降低;6、 需烘烤的物料必须密封冷却之后方可以加入,以免组分材料性质变化;7、 搅拌时间的长短以设备性能、材料加入量为主;搅拌桨的使用以浆料分散难度进行更换,无法更换的可将转速由慢到快进行调整,以免损伤设备;8、 出料前对浆料进行过筛,除去大颗粒以防涂布时造成断带;9、 对配料人员要加强培训,确保其掌握专业知识,以免酿成大祸;10、 配料的关键在于分散均匀,掌握该中心,其它方式可自行调整。五、总论:随着电池制程的日益透明,锂离子电池生产厂家越来越将配料列为核心机密,因为从材料的挑选、处理到合理搭配包含了太多技术人员的心血,同样的材料,有的厂家用起来特别顺利,有的厂家就麻烦百出;有的厂家用中档的材料可以做出高端的电池,而有的厂家却使用最好的材料做成的电池惨不忍睹;本人在此发表配料的基础知识,旨在让大家对配料的了解多一些,少走一些弯路;但因本人水平有限,难免有疏漏之处,希望大家多多批评指正。我也期望大家在工作中认真研究,真诚交流,大胆创新,团结起来,共同促进中国锂离子电池生产水平的提高。篇二:锂电池基础知识讲解理想的锂离子电池,除了锂离子在正负极之间嵌入和脱出外,不发生其他副反应,不出现锂离子的不可逆消耗。实际的锂离子电池,每时每刻都有副反应存在,也有不可逆的消耗,如电解液分解,活性物质溶解,金属锂沉积等,只不过程度不同而己。实际电池系统,每次循环中,任何能够产生或消耗锂离子或电子的副反应,都可能导致电池容量平衡的改变。一旦电池的容量平衡发生改变,这种改变就是不可逆的,并且可以通过多次循环进行累积,对电池性能产生严重影响。⑴正极材料的溶解尖晶石LiMn2O4中Mn的溶解是引起LiMn2O4可逆容量衰减的主要原因,对于Mn的溶解机理,一般有两种解释:氧化还原机制和离子交换机制。氧化还原机制是指放电末期Mn3+的浓度高,在LiMn2O4表面的Mn+会发生歧化反应:2Mn3+(固)Mn4+(固)+Mn2+(液)歧化反应生成的二价锰离子溶于电解液。离子交换机制是指Li+和H+在尖晶石表面进行交换,最终形成没有电化学活性的HMn2O4。Xia等的研究表明,锰的溶解所引起的容量损失占整个电池容量损失的比例随着温度的升高而明显增大(由常温下的23%增大到55°C时的34%)。⑵正极材料的相变化锂离子电池中的相变有两类:一是锂离子正常脱嵌时电极材料发生的相变;二是过充电或过放电时电极材料发生的相变。对于第一类相变,一般认为锂离子的正常脱嵌反应总是伴随着宿主结构摩尔体积的变化,同时在材料内部产生应力,从而引起宿主晶格发生变化,这些变化减少了颗粒间以及颗粒与电极间的电化学接触。第二类相变是Jahn-Teller效应。Jahn-Teller效应是指由于锂离子的反复嵌入与脱嵌引起结构的膨胀与收缩,导致氧八面体偏离球对称性并成为变形的八面体构型。由于Jahn-Teller效应所导致的尖晶石结构不可逆转变,也是LiMn2O4容量衰减的主要原因之一。在深度放电时,Mn的平均化合价低于3.5V,尖晶石的结构由立方晶相向四方晶相转变。四方晶相对称性低且无序性强,使锂离子的脱嵌可逆程度降低,表现为正极材料可逆容量的衰减。⑶电解液的还原锂离子电池中常用的电解液主要包括由各种有机碳酸酯(如PC、EC、DMC、DEC等)的混合物组成的溶剂以及由锂盐(如LiPF6、LiClO4、LiAsF6等)组成的电解质。在充电的条件下,电解液对含碳电极具有不稳定性,故会发生还原反应。电解液还原消耗了电解质及其溶剂,对电池容量及循环寿命产生不良影响,由此产生的气体会增加电池的内部压力,对系统的安全造成威胁。⑷过充电造成的量损失负极锂的沉积:过充电时,发生锂离子在负极活性物质表面上的沉积。锂离子的沉积一方面造成可逆锂离子数目减少,另一方面沉积的锂金属极易与电解液中的溶剂或盐的分子发生反应,生成Li2CO3、LiF或其他物质,这些物质可以堵塞电极孔,最终导致容量损失和寿命下降。电解液氧化:锂离子电池常用的电解液在过充电时容易分解形成不可溶的Li2CO3等产物,阻塞极孔并产生气体,这也会造成容量的损失,并产生安全隐患。正极氧缺陷:高电压区正极LiMn2O4中有损失氧的趋势,这造成氧缺陷从而导致容量损失。⑸自放电锂离子电池的自放电所导致的容量损失大部分是可逆的,只有一小部分是不可逆的。造成不可逆自放电的原因主要有:锂离子的损失(形成不可溶的Li2CO3等物质);电解液氧化产物堵塞电极微孔,造成内阻增大。⑹介面膜的形成由于锂离子或电解液与电极之间的不可逆反应,sz在负极与电解液界面处会形成固态电解液界面层(SEI)。由于形成这种钝化膜而损失的锂离子将导致两极间容量平衡的改变,在最初的几次循环中就会使电池的容量下降。⑺集流体锂离子电池中的集流体材料常用铜和铝,两者都容易发生腐蚀,集流体的腐蚀会导致电池内阻增加,从而造成容量损失。为什么负极要用铜箔而正极要用铝箔1、 采用两者做集流体都是因为两者导电性好,质地比较软(可能这也会有利于粘结),也相对常见比较廉价,同时两者表面都能形成一层氧化物保护膜。2、 铜表面氧化层属于半导体,电子导通,氧化层太厚,阻抗较大;而铝表面氧化层氧化铝属绝缘体,氧化层不能导电,但由于其很薄,通过隧道效应实现电子电导,若氧化层较厚,铝箔导电性级差,甚至绝缘。一般集流体在使用前最好要经过表面清洗,一方面洗去油污,同时可除去厚氧化层。3、 正极电位高,铝薄氧化层非常致密,可防止集流体氧化。而铜箔氧化层较疏松些,为防止其氧化,电位比较低较好,同时Li难与Cu在低电位下形成嵌锂合金,但是若铜表面大量氧化,在稍高电位下Li会与氧化铜发生嵌锂发应。AL箔不能用作负极,低电位下会发生LiAl合金化。4、 集流体要求成分纯。AL的成分不纯会导致表面膜不致密而发生点腐蚀,更甚由于表面膜的破坏导致生成LiAl合金。铜网用硫酸氢盐清洗后用去离子水清洗后烘烤,铝网用氨盐清洗后用去离子水清洗后烘烤,再喷网导电效果好。锂离子电池的基本知识第一节锂离子电池的基本知识一般而言,锂离子电池有三部分构成:锂离子电芯保护电路(PCM)外壳即胶壳电池的分类从锂离子电池与手机配合情况来看,一般分为外置电池和内置电池,这种叫法很容易理解,外置电池就是直接装在手上背面,如:MOTOROLA191,SAMSUNG系列等;而内置电池就是装入手机后,还另有一个外壳把其扣在手机电池内,如:MOTOROLA998,8088,NOKIA的大部分机型外置电池外置电池的封装形式有超声波焊接和卡扣两种:1.1超声波焊接外壳这种封装形式的电池外壳均有底面壳之分,材料一般为ABS+PC料,面壳一般喷油处理,代表型号有:MOTOROLA191,SAMSUNG系列,原装电池的外壳经喷油处理后长期使用一般不会磨花,而一些品牌电池或水货电池用上几天外壳喷油就开始脱落了.其原因为:手机电池的外壳较便宜,而喷油处理的成本一般为外壳的几倍(好一点的),这样处理一般有三道工序:喷光油(打底),喷油(形成颜色),再喷亮油(顺序应该是这样的,如果我没记错的话),而一些厂商为了降低成本就省去了第一和第三道工序,这样成本就很低了.超声波焊塑机其作用为:行业内比较好的国产超声波焊塑机应该是深圳科威信机电公司生产的.焊接有了好的超声波焊塑机不够的,是否能够焊接OK,还与外壳的材料和焊塑机参数设置有很大关系,外壳方面主要与生产厂家的水口料掺杂情况有关,而参数设置则需自己摸索,由于涉及到公司一些技术资料,在这里不便多讲.1.2卡扣式卡扣式电池的原理为底面壳设计时形成卡扣式,其一般为一次性,如果卡好后用户强行折开的话,就无法复原,不过这对于生产厂家来讲不是很大的难度(卡好后再折开),其代表型号有:爱立信788,MOTOROLAV66.内置电池内置电池的封形式也有两种,超声波焊接和包标(使用商标将电池全部包起)超声波焊接的电池主要有:NOKIA8210,8250,8310,7210等.包标的电池就很多了,如前两年很浒的MOTO998,8088了.第二节锂离子电芯的基本知识锂离子电芯是一种新型的电池能源,它不含金属锂,在充放电过程中,只有锂离子在正负极间往来运动,电极和电解质不参与反应。锂离子电芯的能量容量密度可以达到300Wh/L,重量容量密度可以达到125Wh/L。一、 电芯原理锂离子电芯的反应机理是随着充放电的进行,锂离子在正负极之间嵌入脱出,往返穿梭电芯内部而没有金属锂的存在,因此锂离子电芯更加安全稳定。其反应示意图及基本反应式如下所示:二、 电芯的构造电芯的正极是LiCoO2加导电剂和粘合剂,涂在铝箔上形成正极板,负极是层状石墨加导电剂及粘合剂涂在铜箔基带上,目前比较先进的负极层状石墨颗粒已采用纳米碳。根据上述的反应机理,正极采用LiCoO2、LiNiO2、LiMn2O2,其中LiCoO2本是一种层结构很稳定的晶型,但当从LiCoO2拿走XLi后,其结构可能发生变化,但是否发生变化取决于X的大小。通过研究发现当X>0.5时Li1-XCoO2的结构表现为极其不稳定,会发生晶型瘫塌,其外部表现为电芯的压倒终结。所以电芯在使用过程中应通过限制充电电压来控制Li1-XCoO2中的X值,一般充电电压不大于4.2V那么X小于0.5,这时Li1-XCoO2的晶型仍是稳定的。负极C6其本身有自己的特点,当第一次化成后,正极LiCoO2中的Li被充到负极C6中,当放电时Li回到正极LiCoO2中,但化成之后必须有一部分Li留在负极C6中,心以保证下次充放电Li的正常嵌入,否则电芯的压倒很短,为了保证有一部分Li留在负极C6中,一般通过限制放电下限电压来实现。所以锂电芯的安全充电上限电压W4.2V,放电下限电压N2.5V。三、电芯的安全性电芯的安全性与电芯的设计、材料及生产工艺生产过程的控制等因素密切相关。在电芯的充放电过程中,正负极材料的电极电位均处于动态变化中,随着充电电压的增高,正极材料(LixCoO2)电位不断上升,嵌锂的负极材料(LixC6)电位首先下降,然后出现一个较长的电位平台,当充电电压过高(>4.2V)或由于负极活性材料面密度相对于正极材料面密度(C/A)比值不足时,负极材料过度嵌锂,负极电位则迅速下降,使金属锂析出(正常情况下则不会有金属锂的的析出),这样会对电芯的性能及安全性构成极大的威胁。电位变化见下图:在材料已定的情况下,C/A太大,则会出现上述结果。相反,C/A太小,容量低,平台低,循环特性差。这样,在生产加工中如何保证设计好的C/A比成了生产加工中的关键。所以在生产中应就以下几个方面进行控制:负极材料的处理将大粒径及超细粉与所要求的粒径进行彻底分离,避免了局部电化学反应过度激烈而产生负反应的情况,提高了电芯的安全性。提高材料表面孔隙率,这样可以提高10%以上的容量,同时在C/A比不变的情况下,安全性大大提高。处理的结果使负极材料表面与电解液有了更好的相容性,促进了SEI膜的形成及稳定上。制浆工艺的控制1) 制浆过程采用先进的工艺方法及特殊的化学试剂,使正负极浆料各组之间的表面张力降到了最低。提高了各组之间的相容性,阻止了材料在搅拌过程“团聚”的现象。2) 涂布时基材料与喷头的间隙应控制在0.2mm以下,这样涂出的极板表面光滑无颗粒、凹陷、划痕等缺陷。3) 浆料应储存6小时以上,浆料粘度保持稳定,浆料内部无自聚成团现象。均匀的浆料保证了正负极在基材上分布的均匀性,从而提高了电芯的一致性、安全性。采用先进的极片制造设备1) 可以保证极片质量的稳定和一致性,大大提高电芯极片均一性,降低了不安全电芯的出现机率。2) 涂布机单片极板上面密度误差值应小于土2%,极板长度及间隙尺寸误差应小于2mm。3) 辊压机的辊轴锥度和径向跳动应不大于4um,这样才能保证极板厚度的一致性。设备应配有完善的吸尘系统,避免因浮尘颗粒而导致的电芯内部微短路,从而保证了电芯的自放电性能。4) 分切机应采用切刀为辊刀型的连续分切设备,这样切出的极片不存在荷叶边,毛刺等缺陷。同样设备应配有完善的吸尘系统,从而保证了电芯的自放电性能。先进的封口技术目前国内外方形锂离子电芯的封口均采用激光(LASER)熔接封口技术,它是利用YAG棒(钇铝石榴石)激光谐振腔中受强光源(一般为氮灯)的激励下发出一束单一频率的光(入二1.06mm)经过谐振折射聚焦成一束,再把聚焦的焦点对准电芯的筒体和盖板之间,使其熔化后亲合为一体,以达到盖板与筒体的密封熔合的目的。为了达到密封焊,必须掌握以下几个要素:1) 必须有能量大、频率高、聚焦性能好、跟踪精度高的激光焊机。2) 必须有配合精度高的适用于激光焊的电芯外壳及盖板。3) 必须有高统一纯度的氮气保护,特别是铝壳电芯要求氮气纯度高,否则铝壳表面就会产生难以熔化的A12O3(其熔点为2400°C)。四、电芯膨胀原因及控制锂离子电芯在制造和使用过程中往往会有肿胀现象,经过分析与研究,发现主要有以下两方面原因:1锂离子嵌入带来的厚度变化电芯充电时锂离子从正极脱出嵌入负极,引起负极层间距增大,而出现膨胀,一般而言,电芯越厚,其膨胀量越大。工艺控制不力引起的膨胀在制造过程中,如浆料分散、C/A比离散性、温度控制都会直接影响电芯电芯的膨胀程度。特别是水,因为充电形成的高活性锂碳化合物对水非常敏感,从而发生激烈的化学反应。反应产生的气体造成电芯内压升高,增加了电芯的膨胀行为。所以在生产中,除了应对极板严格除湿外,在注液过程中更应采用除湿设备,保证空气的干燥度为HR2%,露点(大气中的湿空气由于温度下降,使所含的水蒸气达到饱和状态而开始凝结时的温度)小于-40°C。在非常干燥的条件下,并采取真空注液,极大地降低了极板和电解液的吸水机率。五、铝壳电芯与钢壳电芯安全性比较铝壳相对于钢壳具有很高的安全优势,以下是不同的压力实验:注:压力是电芯压力为电芯内部之压力(单位:Kg),表内数据为电芯之厚度(单位:mm)由此可见钢壳对内压反映十分迟钝,而铝壳对内压反应却十分敏锐。因此从厚度上就基本能判断出电芯的内压,而钢壳电芯往往隐含着内压带来的不安全隐患。其中钢壳电芯型号为063448。第三节锂离子电池保护线路(PCM)由第二节锂离子电芯的知识我们可以看出,锂离子电池至少需要三重保护——过充电保护,过放电保护,短路保护,那么就应而产生了其保护线路,那么这个保护线路针对以上三个保护要求而言:过充电保护:过充电保护IC的原理为:当外部充电器对锂电池充电时,为防止因温度上升所导致的内压上升,需终止充电状态。此时,保护IC需检测电池电压,当到达4.25V时(假设电池过充点为4.25V)即启动过度充电保护,将功率MOS由开转为切断,进而截止充电。过放电保护:过放电保护IC原理:为了防止锂电池的过放电,假设锂电池接上负载,当锂电池电压低于其过放电电压检测点(假定为2.5V)时将启动过放电保护,使功率MOSFET由开转变为切断而截止放电,以避免电池过放电现象产生,并将电池保持在低静态电流的待机模式,此时的电流仅0.1uA。当锂电池接上充电器,且此时锂电池电压高于过度放电电压时,过度放电保护功能方可解除。另外,考虑到脉冲放电的情况,过放电检测电路设有延迟时间以避免产生误教你制片<一>制片前段.极片辊压.首先要有一台好的辊压机,当然没有太好的也没有关系,只要辊面是平的基本上没有什么问题,现在来说说连续式辊压.根据经验调节对辊压力,取一单片试辊,辊压速度最好在10M/MIN以内,直到试片极片合格为止;B:涂布收卷卷径最好控制在W150mm,放卷张力调节好,还要保证保证扶辊正常工作C;单片试辊合格后,手动穿带,穿带过程平稳,不能弄破极片,调节好收卷张力平衡(不要忘了给气涨筒打气,嘿嘿!)打开纠偏器,开机生产!〖注意事项:〗速度不能开太快,生产的速度要和试片时的速度一致.收卷时极片要用胶纸固定在卷筒上,并保证两边张力一致.3注意极片的的走带并且即使纠正4,定时测量极片厚度,检查极片外观.裁大片这里说的是连续裁大片.A把辊压好的极片放入裁片机放卷气轴,调节好两边张力,将极片(集流体)较光的一面朝上,调节裁片参数C试裁合格后生产,裁好的极片应整齐的放在物料盘里.〖注意事项:〗1生产前要检查裁片机刀口是否锋利,平整.裁片后极片是否有毛刺.2保持机台,物料盘的清洁3定时测量裁片尺寸,检查极片外观<二>制片分切极片这里说的是连续分条A使用符合要求的分条到,安装好后用酒精清洗.B安装好分条定位挡板,保证分条后两边边料尺寸一致C试分条合格后可以生产〖注意事项:〗1分条刀上下刀面要平行,一致.2挡板一定要安装好,极片分条后不能不能分斜,3分条后极片如果打皱,可以适当调节分条刀左右两边压力,放片过程要保证极片平整的穿过分条刀4分条刀口不能有缺口,注意分条后极片外观,及时纠正错误的操作.极片分重略〖注意事项:〗档次要分清楚,称重台面要保持水平,清洁,电子称空载归零称重时极片要轻拿轻放,保证极片在称重过程中不被撞伤或者产生边缘毛刺.称好的极片平整的放在指定位置或物料盘内,每一打极片要用软制海绵条隔开.称重速度不宜太快,挑选出外观不合格的极片.3极耳焊接A使用符合要求的极耳,B调节好点焊机电流参数等C焊接的位置,焊接的尺寸要保证〖注意事项:〗点焊时极片要轻拿轻放,点焊好的极片要定时做剥离测试,防止虚焊.点焊电流参数调节好,除了不能虚焊以外,还要注意不能焊穿极耳.焊接尺寸要控制好来4包胶纸A胶纸规格按要求使用,使用前确定胶纸的粘性是否能保证包胶后的牢固性〖注意事项:〗极片要轻拿轻放,工作台面要保持清洁.包胶时要保证胶纸两面对称且包好的胶纸要平整不要包到附料5外观全检返修A按要求挑选极片并分类放置,可以返修的要按要求返修.B不漏检,发现异常或上工序造成不良太多时要及时与上工序沟通解决C记录各人生产不良项目,数量等.〖注意事项:〗返修极片一定要按要求操作各项记录必须真实,沟通要及时.篇三:锂电池基本知识Li-ion电池有哪些优点?哪些缺点?Li-ion具有以下优点:1) 单体电池的工作电压高达2.75-4.2V(标称电压3.6V或者3.7V)2) 比能量大,循环寿命长,一般均可达到500次以上,甚至1000次.4) 安全性能好,无公害,无记忆效应.作为Li-ion前身的锂电池,因金属锂易形成枝晶发生短路,缩减了其应用领域:Li-ion中不含镉、铅、汞等对环境有污染的元素:部分工艺(如烧结式)的Ni-Cd电池存在的一大弊病为“记忆效应”,严重束缚电池的使用,但Li-ion根本不存在这方面的问题。5) 自放电小室温下充满电的Li-ion储存1个月后的自放电率为10%左右,2、什么充电限制电压?额定容量?额定电压?终止电压?A、 充电限制电压按生产厂家规定,电池由恒流充电转入恒压充电时的电压值。一般单节电池充电限制电压4.2V,多节就是N*4.2(n=1,2,3,4 )B、 额定容量生产厂家标明的电池容量,指电池在环境温度为20°C±5°C条件下,以5h率放电至终止电压时所应提供的电量,用C5表示,单位为Ah(安培小时)或mAh(毫安小时)。C、 标称电压用以表示电池电压的近似值。D、 终止电压规定放电终止时电池的负载电压,其值为n*2.75V(锂离子单体电池的串联只数用“n”表示)。10、 为什么恒压充电电流为逐渐减少?因为恒流过程终止时,电池内部的电化学极化然后保持在整个恒流中相同的水平,恒压过程,再恒定电场作用下,内部Li+的浓差极化在逐渐消除,离子的迁移数和速度表现为电流逐渐减少。11、 什么是电池的容量?电池的容量有额定容量和实际容量之分。电池的额定量是指设计与制造电池时规定或保证电池在一定的放电条件下,应该放出最低限度的电量。Li-ion规定电池在常温、恒流(1C)恒压(4.2V)控制的充电条件下充电3h,电池的实际容量是指电池在一定的放电条件下所放出的实际电量,主要受放电倍率和温度的影响(故严格来讲,电池容量应指明充放电条件)。容量常见单位有:mAh、Ah=1000mAh)12、 什么是电池内阻?是指电池在工作时,电流流过电池内部所受到的阻力。有欧姆内阻与极化内阻两部分组成。电池内阻大,会导致电池放电工作电压降低,放电时间缩短。内阻大小主要受电池的材料、制造工
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 货物陆运合同范文范本模板
- 物业管理的噪音与污染管理
- 我国自动驾驶车路协同发展现状分析
- 人脐带间充质干细胞通过抑制NLRP3介导的滑膜细胞焦亡减轻膝骨关节炎
- 扩张法与Nagata法治疗小耳畸形的疗效对比分析
- 2025年岳麓版选择性必修2历史上册阶段测试试卷含答案
- 智能家居产品销售代理合同(2篇)
- 2025年外研衔接版九年级历史下册月考试卷含答案
- 服装购买合同协议书范本(2篇)
- 2025年外研版三年级起点选择性必修1历史上册阶段测试试卷
- 中小商业银行数字化转型现状及对策研究
- 亲子非暴力沟通培训讲座
- 保险投诉处理流程培训
- JJG 707-2014扭矩扳子行业标准
- 2025财年美国国防预算概览-美国国防部(英)
- 2024年江西省南昌市中考一模数学试题(含答案)
- 《采暖空调节能技术》课件
- CONSORT2010流程图(FlowDiagram)【模板】文档
- 游戏综合YY频道设计模板
- 中兴ZCTP 5GC高级工程师认证考试题库汇总(含答案)
- 大学生创新创业教程PPT全套完整教学课件
评论
0/150
提交评论