辽宁抚顺市六校协作体2023-2024学年高二数学第一学期期末监测模拟试题含解析_第1页
辽宁抚顺市六校协作体2023-2024学年高二数学第一学期期末监测模拟试题含解析_第2页
辽宁抚顺市六校协作体2023-2024学年高二数学第一学期期末监测模拟试题含解析_第3页
辽宁抚顺市六校协作体2023-2024学年高二数学第一学期期末监测模拟试题含解析_第4页
辽宁抚顺市六校协作体2023-2024学年高二数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁抚顺市六校协作体2023-2024学年高二数学第一学期期末监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知曲线,则“”是“C为双曲线”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.数列满足且,则的值是()A.1 B.4C.-3 D.63.已知正的边长为,那么的平面直观图的面积为()A. B.C. D.4.已知,则()A. B.1C. D.5.在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例.在西方,最早提出并证明此定理的为公元前世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和.若一个直角三角形的斜边长等于则这个直角三角形周长的最大值为()A. B.C. D.6.已知点是椭圆上的一点,点,则的最小值为A. B.C. D.7.我国新冠肺炎疫情防控进入常态化,各地有序进行疫苗接种工作,下面是我国甲、乙两地连续11天的疫苗接种指数折线图,根据该折线图,下列说法不正确的是()A.这11天甲地指数和乙地指数均有增有减B.第3天至第11天,甲地指数和乙地指数都超过80%C.在这11天期间,乙地指数的增量大于甲地指数的增量D.第9天至第11天,乙地指数的增量大于甲地指数的增量8.已知圆,若存在过点的直线与圆C相交于不同两点A,B,且,则实数a的取值范围是()A. B.C. D.9.若用面积为48的矩形ABCD截某圆锥得到一个椭圆,且该椭圆与矩形ABCD的四边都相切.设椭圆的方程为,则下列满足题意的方程为()A. B.C. D.10.从1,2,3,4,5中任取2个不同的数,两数和为偶数的概率为()A. B.C. D.11.已知,则点关于平面的对称点的坐标是()A. B.C. D.12.已知数列满足,,,前项和()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知方程,若此方程表示椭圆,则实数的取值范围是________;若此方程表示双曲线,则实数的取值范围是________.14.某市有30000人参加阶段性学业水平检测,检测结束后的数学成绩X服从正态分布,若,则成绩在140分以上的大约为______人15.希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A,B的距离之比为定值λ(λ≠1)的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy中,A(-2,1),B(-2,4),点P是满足的阿氏圆上的任一点,则该阿氏圆的方程为___________________;若点Q为抛物线E:y2=4x上的动点,Q在直线x=-1上的射影为H,则的最小值为___________.16.已知函数,是其导函数,若曲线的一条切线为直线:,则的最小值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,C是圆B:(B是圆心)上一动点,线段AC的垂直平分线交BC于点P(1)求动点P的轨迹的方程;(2)设E,F为与x轴的两交点,Q是直线上动点,直线QE,QF分别交于M,N两点,求证:直线MN过定点18.(12分)已知命题:“曲线表示焦点在轴上的椭圆”,命题:“曲线表示双曲线”.(1)若是真命题,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围.19.(12分)已知函数(Ⅰ)若的图象在点处的切线与轴负半轴有公共点,求的取值范围;(Ⅱ)当时,求的最值20.(12分)在数列中,,.(1)证明:数列为等比数列,并求数列的通项公式;(2)求数列的前项和.21.(12分)在平面直角坐标系中,动点到点的距离等于点到直线的距离.(1)求动点的轨迹方程;(2)记动点的轨迹为曲线,过点的直线与曲线交于两点,在轴上是否存在一点,使若存在,求出点的坐标;若不存在,请说明理由.22.(10分)已知函数R)(1)当时,求函数的图象在处的切线方程;(2)求的单调区间

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据充分必要条件的定义,以及双曲线的标准方程进行判断可得选项【详解】解:当时,表示双曲线,当表示双曲线时,则,所以“”是“C为双曲线”的充分不必要条件.故选A2、A【解析】根据题意,由于,可知数列是公差为-3的等差数列,则可知d=-3,由于=,故选A3、D【解析】作出正的实际图形和直观图,计算出直观图的底边上的高,由此可求得的面积.【详解】如图①②所示的实际图形和直观图.由斜二测画法可知,,,在图②中作于,则.所以.故选:D.【点睛】本题考查直观图面积的计算,考查计算能力,属于基础题.4、B【解析】先根据共轭复数的定义可得,再根据复数的运算法则即可求出【详解】因为,所以故选:B5、C【解析】设直角三角形的两条直角边边长分别为,则,根据基本不等式求出的最大值后,可得三角形周长的最大值.【详解】设直角三角形的两条直角边边长分别为,则.因为,所以,所以,当且仅当时,等号成立.故这个直角三角形周长的最大值为故选:C6、D【解析】设,则,.所以当时,的最小值为.故选D.7、C【解析】由折线图逐项分析得到答案.【详解】对于选项A,从折线图中可以直接观察出甲地和乙地的指数有增有减,故选项A正确;对于选项B,从第3天至第11天,甲地指数和乙地指数都超过80%,故选项B正确;对于选项C,从折线图上可以看出这11天甲的增量大于乙的增量,故选项C错误;对于选项D,从折线图上可以看出第9天至第11天,乙地指数的增量大于甲地指数的增量,故D正确;故选:C.8、D【解析】根据圆的割线定理,结合圆的性质进行求解即可.【详解】圆的圆心坐标为:,半径,由圆的割线定理可知:,显然有,或,因为,所以,于是有,因为,所以,而,或,所以,故选:D9、A【解析】由椭圆与矩形ABCD的四边都相切得到再逐项判断即可.【详解】由于椭圆与矩形ABCD的四边都相切,所以矩形两边长分别为,由矩形面积为48,得,对于选项B,D由于,不符合条件,不正确.对于选项A,,满足题意.对于选项C,不正确.故选:A.10、B【解析】利用列举法,结合古典概型概率计算公式,计算出所求概率.【详解】从中任取个不同的数的方法有,共种,其中和为偶数的有共种,所以所求的概率为.故选:B【点睛】本小题主要考查古典概型概率计算,属于基础题.11、C【解析】根据对称性求得坐标即可.【详解】点关于平面的对称点的坐标是,故选:C12、C【解析】根据,利用对数运算得到,再利用等比数列的前n项和公式求解.【详解】解:因为,所以,则,所以数列是以为首项,为公比的等比数列,所以,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、①.②.【解析】分别根据椭圆、双曲线的标准方程的特征建立不等式即可求解.【详解】当方程表示椭圆时,则有且,所以的取值范围是;当方程表示双曲线时,则有或,所以的取值范围是.故答案为:;14、150【解析】根据考试的成绩X服从正态分布.得到考试的成绩X的正太密度曲线关于对称,根据,得到,根据频率乘以样本容量得到这个分数段上的人数【详解】由题意,考试的成绩X服从正态分布考试的成绩X的正太密度曲线关于对称,,,,该市成绩在140分以上的人数为故答案为:15015、①.②.【解析】(1)利用直译法直接求出P点的轨迹(2)先利用阿氏圆的定义将转化为P点到另一个定点的距离,然后结合抛物线的定义容易求得的最小值【详解】设P(x,y),由阿氏圆的定义可得即化简得则设则由抛物线的定义可得当且仅当四点共线时取等号,的最小值为故答案为:【点睛】本题考查了抛物线的定义及几何性质,同时考查了阿氏圆定义的应用.还考查了学生利用转化思想、方程思想等思想方法解题的能力.难度较大16、【解析】设直线与曲线相切的切点为,借助导数的几何意义用表示出m,n即可作答.【详解】设直线与曲线相切的切点为,而,则直线的斜率,于是得,即,由得,而,于是得,即因,则,,当且仅当时取“=”,所以的最小值为.故答案为:【点睛】结论点睛:函数y=f(x)是区间D上的可导函数,则曲线y=f(x)在点处的切线方程为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)根据,利用椭圆的定义求解;(2)(解法1)设,得到,的方程,与椭圆方程联立,求得M,N的坐标,写出直线的方程求解;(解法2)上同解法1,由对称性分析知动直线MN所过定点一定在x轴上,设所求定点为,由C,D,T三点共线,然后由求解;(解法3)设,由,,设:,:,其中,与椭圆方程联立,整理得,由F,M,N三点的横坐标为该方程的三个根,得到:求解.【小问1详解】解:由题知,则,由椭圆的定义知动点P的轨迹为以A,B为焦点,6为长轴长的椭圆,所以轨迹的方程为【小问2详解】(解法1)易知E,F为椭圆的长轴两端点,不妨设,,设,则,,于是:,:,联立得,解得或,易得,同理当,即时,:;当时,有,于是:,即综上直线MN过定点(解法2)上同解法1,得,,由对称性分析知动直线MN所过定点一定在x轴上,设所求定点为,由C,D,T三点共线,得,即,于是,整理得,由t的任意性知,即,所以直线MN过定点(解法3)设,则,,当时,直线MN即为x轴;当时,因为,所以,则,设:,:,其中,联立,得,整理得,易知F,M,N三点的横坐标为该方程的三个根,所以:,由及的任意性,知直线MN过定点18、(1);(2).【解析】(1)根据方程为焦点在轴上的椭圆的条件列不等式组,解不等式组求得的取值范围.(2)求得为真命题时的取值范围,结合是的必要不充分条件列不等式组,解不等式组求得的取值范围.【详解】(1)若是真命题,所以,解得,所以的取值范围是.(2)由(1)得,是真命题时,的取值范围是,为真命题时,,所以的取值范围是因为是的必要不充分条件,所以,所以,等号不同时取得,所以【点睛】本小题主要考查椭圆、双曲线,考查必要不充分条件求参数.19、(Ⅰ);(Ⅱ)答案见解析.【解析】(Ⅰ)求导数.求得切线方程,由切线与轴的交点在负半轴可得的范围;(Ⅱ)求导数,由的正负确定单调性,极值得最值【详解】命题意图本题主要考查导数在函数问题中的应用解析(Ⅰ)由题可知,,故可得的图象在点处的切线方程为令,可得由题意可得,即,解得,即的取值范围为(Ⅱ)当时,,易知在上单调递增又,当时,,此时单调递减,当时,,此时单调递增,无最大值【点睛】关键点点睛:本题考查用导数的几何意义,考查用导数求函数的的最值.解题关键是求出导函数,由的正负确定单调性,得函数的极值,从而可得最值20、(1)证明见解析,;(2).【解析】(1)利用等比数列的定义结合已知条件即可得到证明.(2)运用分组求和的方法,利用等比数列和等差数列前项和公式求解即可.【详解】(1)证明:∵,∴数列为首项是2,公比是2的等比数列.∴,∴.(2)由(1)知,,【点睛】本题考查等比数列的定义,通项公式的应用,考查等差数列和等比数列前项和公式的应用,考查分组求和的方法,属于基础题.21、(1);(2)存在,.【解析】(1)利用抛物线的定义即求;(2)由题可设直线的方程为,利用韦达定理法结合条件可得,即得.【小问1详解】因为动点到点的距离等于点到直线的距离,所以动点到点的距离和它到直线的距离相等,所以点的轨迹是以为焦点,以直线为准线的抛物线,设抛物线方程为,由,得,所以动点的轨迹方程为.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论