开卷教育联盟2023年高二数学第一学期期末考试试题含解析_第1页
开卷教育联盟2023年高二数学第一学期期末考试试题含解析_第2页
开卷教育联盟2023年高二数学第一学期期末考试试题含解析_第3页
开卷教育联盟2023年高二数学第一学期期末考试试题含解析_第4页
开卷教育联盟2023年高二数学第一学期期末考试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

开卷教育联盟2023年高二数学第一学期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线:的左、右焦点分别为,,点在双曲线上.若为钝角三角形,则的取值范围是A. B.C. D.2.在棱长为1的正四面体中,点满足,点满足,当和的长度都为最短时,的值是()A. B.C. D.3.已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B.C. D.4.直线的倾斜角为()A.60° B.30°C.120° D.150°5.将一枚骰子先后抛掷两次,若先后出现的点数分别记为a,b,则直线到原点的距离不超过1的概率是()A. B.C. D.6.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg7.与直线关于轴对称的直线的方程为()A. B.C. D.8.设正数数列的前项和为,数列的前项积为,且,则()A. B.C. D.9.口袋中装有大小形状相同的红球3个,白球3个,小明从中不放回的逐一取球,已知在第一次取得红球的条件下,第二次取得白球的概率为()A.0.4 B.0.5C.0.6 D.0.7510.某软件研发公司对某软件进行升级,主要是对软件程序中的某序列重新编辑,编辑新序列为,它的第项为,若序列的所有项都是1,且,.记数列的前项和、前项积分别为,,若,则的最小值为()A.2 B.3C.4 D.511.若,,则有()A. B.C. D.12.在平行六面体中,,,,则()A. B.5C. D.3二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则曲线在点处的切线方程为______14.已知函数集合,若A中有且仅有4个元素,则满足条件的整数a的个数为______15.过点作圆的切线,则切线方程为______.16.已知对任意正实数m,n,p,q,有如下结论成立:若,则有成立,现已知椭圆上存在一点P,,为其焦点,在中,,,则椭圆的离心率为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆的圆心在直线上,且经过点和.(1)求圆的标准方程;(2)若过点且斜率存在的直线与圆交于,两点,且,求直线的方程.18.(12分)如图,四棱锥中,,,,平面.(1)在线段上是否存在一点使得平面?若存在,求出的位置;若不存在,请说明理由;(2)求四棱锥的体积.19.(12分)如图1,在△MBC中,,A,D分别为棱BM,MC的中点,将△MAD沿AD折起到△PAD的位置,使,如图2,连结PB,PC,BD(1)求证:平面PAD⊥平面ABCD;(2)若E为PC中点,求直线DE与平面PBD所成角的正弦值20.(12分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AB⊥AD,BC//AD,AD=2BC=2PA=2AB=2,E,F,G分别为线段AD,DC,PB的中点.(1)证明:直线PF//平面ACG;(2)求直线PD与平面ACG所成角的正弦值.21.(12分)如图,在平面直角坐标系xOy中,已知抛物线C:y2=4x的焦点为F,准线为l,过点F且斜率大于0的直线交抛物线C于A,B两点(其中A在B的上方),过线段AB的中点M且与x轴平行的直线依次交直线OA、OB,l于点P、Q、N(1)试探索PM与NQ长度的大小关系,并证明你的结论;(2)当P、Q是线段MN的三等分点时,求直线AB的斜率;(3)当P、Q不是线段MN的三等分点时,证明:以点Q为圆心、线段QO长为半径的圆Q不可能包围线段NP22.(10分)已知椭圆的焦点与双曲线的焦点相同,且D的离心率为.(1)求C与D的方程;(2)若,直线与C交于A,B两点,且直线PA,PB的斜率都存在.①求m的取值范围.②试问这直线PA,PB的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据双曲线的几何性质,结合余弦定理分别讨论当为钝角时的取值范围,根据双曲线的对称性,可以只考虑点在双曲线上第一象限部分即可.【详解】由题:双曲线:的左、右焦点分别为,,点在双曲线上,必有,若为钝角三角形,根据双曲线的对称性不妨考虑点在双曲线第一象限部分:当为钝角时,在中,设,有,,即,,所以;当时,所在直线方程,所以,,,根据图象可得要使,点向右上方移动,此时,综上所述:的取值范围是.故选:C【点睛】此题考查双曲线中焦点三角形相关计算,关键在于根据几何意义结合特殊情况分类讨论,体现数形结合思想.2、A【解析】根据给定条件确定点M,N的位置,再借助空间向量数量积计算作答.【详解】因,则,即,而,则共面,点M在平面内,又,即,于是得点N在直线上,棱长为1的正四面体中,当长最短时,点M是点A在平面上的射影,即正的中心,因此,,当长最短时,点N是点D在直线AC上的射影,即正边AC的中点,,而,,所以.故选:A3、D【解析】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,故选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.4、C【解析】求出斜率,根据斜率与倾斜角的关系,即可求解.【详解】解:,即,直线的斜率为,即直线的倾斜角为120°.故选:C.5、C【解析】先由条件得出a,b满足,得出满足的基本事件数,再求出总的基本事件数,从而可得答案.【详解】直线到原点的距离不超过1,则所以当时,可以为5,6当时,可以为4,5,6当时,可以为4,5,6当时,可以为2,3,4,5,6当时,可以为1,2,3,4,5,6当时,可以为1,2,3,4,5,6满足的共有25种结果.将一枚骰子先后抛掷两次,若先后出现的点数分别记为a,b,共有种结果所以满足条件的概率为故选:C6、D【解析】根据y与x的线性回归方程为y=0.85x﹣85.71,则=0.85>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加1cm,预测其体重约增加0.85kg,C正确;该大学某女生身高为170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误故选D7、D【解析】点关于x轴对称,横坐标不变,纵坐标互为相反数,据此即可求解.【详解】设(x,y)是与直线关于轴对称的直线上任意一点,则(x,-y)在上,故,∴与直线关于轴对称的直线的方程为.故选:D.8、B【解析】当可求得;当时,可证得数列为等差数列,利用等差数列通项公式可推导得到,由求得后,利用可求得结果.【详解】当时,,解得:;当时,由得:,即,,数列是以为首项,为公差的等差数列,,解得:,,经检验:满足,,故选:B.9、C【解析】求出第一次取得红球的事件、第一次取红球第二次取白球的事件概率,再利用条件概率公式计算作答.【详解】记“第一次取得红球”为事件A,“第二次取得白球”为事件B,则,,于是得,所以在第一次取得红球的条件下,第二次取得白球的概率为0.6.故选:C10、C【解析】先利用序列的所有项都是1,得到,整理后得到是等比数列,进而求出公比和首项,从而求出和,利用,列出不等式,求出,从而得到的最小值【详解】因为,,所以,又序列的所有项都是1,所以它的第项,所以,所以数列是等比数列,又,,所以公比,.所以,,,要,即,即,所以,所以,,所以最小值为4.故选:C.11、D【解析】对待比较的代数式进行作差,利用不等式基本性质,即可判断大小.【详解】因为,又,,故,则,即;因为,又,,故,则;综上所述:.故选:D.12、B【解析】由,则结合已知条件及模长公式即可求解.【详解】解:,所以,所以,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求出,求出导函数及,进而求出切线方程.【详解】∵,∴,又,∴在处的切线方程为,即故答案为:14、32【解析】作出的图像,由时,不等式成立,所以,判断出符合条件的非零整数根只有三个,即等价于时,;时,;利用数形结合,进行求解.【详解】作出的图像如图所示:因为时,不等式成立,所以,符合条件的非零整数根只有三个.由可得:时,;时,;所以在y轴左侧,的图像都在的下方;在y轴右侧,的图像都在的上方;而,,,,.平移直线,由图像可知:当时,集合A中除了0只含有1,2,3,符合题意,此时整数a可以取:-23,-22,-21……-9.一共15个;当时,集合A中除了0含有1,-1,-2,符合题意.当时,集合A中除了0只含有-1,-2,-3,符合题意,此时整数a可以取:5,6,7……20一共16个.所以整数a的值一共有15+1+16=32(个).故答案为:32【点睛】分离参数法求零点个数的问题是转化为,分别做出和的图像,观察交点的个数即为零点的个数.用数形结合法解决零点问题常有以下几种类型:(1)零点个数:几个零点;(2)几个零点的和;(3)几个零点的积.15、【解析】求出切点与圆心连线的斜率后可得切线方程.【详解】因为点在圆上,故切线必垂直于切点与圆心连线,而切点与圆心连线的斜率为,故切线的斜率为,故切线方程为:即.故答案为:.16、【解析】根据正弦定理,结合题意,列出方程,代入数据,化简即可得答案.详解】由题意得:,所以,所以,解得.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)设圆心,由题意得,,结合两点间的距离公式求解的值,则圆心与半径可求,圆的方程可求;(2)若直线的斜率不存在,设直线的方程为,符合题意,若直线的斜率存在,设直线方程为,即,由圆心到直线的距离与半径关系求得,则直线方程可求【小问1详解】解:(1)设圆心,由题意得,,,解得.圆心坐标为,半径.则圆的方程为;【小问2详解】解:(2)直线的斜率存在时,设直线的方程为,即,,圆心到直线的距离,即,解得,得直线的方程为.18、(1)存在,为的中点,证明见解析;(2).【解析】(1)取的中点,的中点,连接,,,证明,由线面平行的判定定理即可求证;(2)先证明平面面,过点作于点,即可证明面,在中,利用面积公式求出即为四棱锥的高,再由棱锥的体积公式即可求解.【详解】(1)线段上存在点使得平面,为的中点.证明如下:如图取的中点,的中点,连接,,,因为,分别为,的中点,所以且因为且,所以,且,所以四边形为平行四边形,可得,因为面,面,所以平面;(2)过点作于点,因为平面,面,所以平面面,因为,面,平面面,所以面,因为,,所以,,所以,即,所以,即为四棱锥的高,所以.19、(1)证明见解析;(2).【解析】(1)推导出,,利用线面垂直的判定定理可得平面,再利用面面垂直的判定定理即可证明;(2)以A为坐标原点,建立如图空间直角坐标系,利用向量法即可求出直线DE与平面所成角的正弦值.【小问1详解】由题意知,因为点A、D分别为MB、MC中点,所以,又,所以,所以.因为,所以,又,所以平面,又平面,所以平面平面;【小问2详解】因为,,,所以两两垂直,以A为坐标原点,建立如图空间直角坐标系,,则,设平面的一个法向量为,则,令,得,所以,设直线DE与平面所成角为,则,所以直线DE与平面所成角的正弦值为.20、(1)证明见解析(2)【解析】(1)连接EC,设EB与AC相交于点O,结合已知条件利用线面平行的判定定理可证得OG//平面PEF,再由三角形中位线定理结合线面垂直的判定定理可得AC//平面PEF,从而由面面垂直的判定可得平面PEF//平面GAC,进而可证得结论,(2)由已知可证得PA、AB、AD两两互相垂直,以A为原点,AB,AD,AP所在的直线为x轴,y轴,z轴,建立空间直角坐标系,利用空间向量求解即可【小问1详解】证明:连接EC,设EB与AC相交于点O,如图,因为BC//AD,且,AB⊥AD,所以四边形ABCE为矩形,所以O为EB的中点,又因为G为PB的中点,所以OG为△PBE的中位线,即OG∥PE,因为OG平面PEF,PE⊂平面PEF,所以OG//平面PEF,因为E,F分别为线段AD,DC的中点,所以EF//AC,因为AC平面PEF,EF⊂平面PEF,所以AC//平面PEF,因为OG⊂平面GAC,AC⊂平面GAC,AC∩OG=O,所以平面PEF//平面GAC,因为PF⊂平面PEF,所以PF//平面GAC.【小问2详解】因为PA⊥底面ABCD,AB⊂平面ABCD,AD⊂平面ABCD,所以PA⊥AB,PA⊥AD,因为AB⊥AD,所以PA、AB、AD两两互相垂直,以A为原点,AB,AD,AP所在的直线为x轴,y轴,z轴,建立空间直角坐标系,如图所示:则A(0,0,0),,C(1,1,0),D(0,2,0),P(0,0,1),所以,设平面ACG的法向量为,则,所以,令x=1,可得y=﹣1,z=﹣1,所以,设直线PD与平面ACG所成角为θ,则,所以直线PD与平面ACG所成角的正弦值为.21、(1),证明见解析(2)(3)证明见解析【解析】(1)根据已知条件设出直线方程及,与抛物线的方程联立,利用韦达定理和中点坐标公式,三点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论