湖南省双峰一中2023-2024学年数学高二上期末学业质量监测试题含解析_第1页
湖南省双峰一中2023-2024学年数学高二上期末学业质量监测试题含解析_第2页
湖南省双峰一中2023-2024学年数学高二上期末学业质量监测试题含解析_第3页
湖南省双峰一中2023-2024学年数学高二上期末学业质量监测试题含解析_第4页
湖南省双峰一中2023-2024学年数学高二上期末学业质量监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省双峰一中2023-2024学年数学高二上期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行下图所示的程序框图,则输出的值为()A.5 B.6C.7 D.82.函数直线与的图象相交于A、B两点,则的最小值为()A.3 B.C. D.3.如图是函数的导函数的图象,下列说法正确的是()A.函数在上是增函数B.函数在上是减函数C.是函数的极小值点D.是函数的极大值点4.已知等差数列满足,则等于()A. B.C. D.5.已知椭圆的左右焦点分别为,,点B为短轴的一个端点,则的周长为()A.20 B.18C.16 D.96.若函数在区间上单调递增,则实数的取值范围是()A. B.C. D.7.已知直线与圆交于两点,过分别作的垂线与轴交于两点,则A.2 B.3C. D.48.已知p:,q:,那么p是q的()A.充要条件 B.必要不充分条件C.充分不必要条件 D.既不充分也不必要条件9.已知圆,圆,则两圆的公切线的条数为()A.1 B.2C.3 D.410.由于受疫情的影响,学校停课,同学们通过三种方式在家自主学习,现学校想了解同学们对假期学习方式的满意程度,收集如图1所示的数据;教务处通过分层抽样的方法抽取4%的同学进行满意度调查,得到的数据如图2.下列说法错误的是()A.样本容量为240B.若,则本次自主学习学生的满意度不低于四成C.总体中对方式二满意学生约为300人D.样本中对方式一满意的学生为24人11.数列的一个通项公式为()A. B.C. D.12.如下图,面与面所成二面角的大小为,且A,B为其棱上两点.直线AC,BD分别在这个二面角的两个半平面中,且都垂直于AB,已知,,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知命题:,总有.则为______14.设直线,直线,若,则_______.15.已知函数的图象与x轴相交于A,B两点,与y轴相交于点C,则的外接圆E的方程是________16.已知函数,设,且函数有3个不同的零点,则实数k的取值范围为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在正方体中,E,F,G,H,K,L分别是AB,,,,,DA各棱的中点.(1)求证:E,F,G,H,K,L共面:(2)求证:平面EFGHKL;(3)求与平面EFGHKL所成角的余弦值.18.(12分)在正方体中,,,分别是,,的中点.(1)证明:平面平面;(2)求直线与所成角的正切值.19.(12分)已知椭圆,点在上,,且(1)求出直线所过定点的坐标;(不需要证明)(2)过A点作的垂线,垂足为,是否存在点,使得为定值?若存在,求出的值;若不存在,说明理由.20.(12分)已知等比数列的前项和为,且,.(1)求的通项公式;(2)求.21.(12分)椭圆的左、右焦点分别为,短轴的一个端点到的距离为,且椭圆过点过且不与两坐标轴平行的直线交椭圆于两点,点与点关于轴对称.(1)求椭圆的方程(2)当直线的斜率为1时,求的面积;(3)若点,求证:三点共线.22.(10分)在平面直角坐标系中,过点的直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(1)求直线的普通方程和曲线的直角坐标方程;(2)设曲线与直线交于,两点,求线段的中点的直角坐标及的值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】直接按照程序框图运行即可得正确答案.【详解】当时,不成立,时,不成立,时,不成立,时,不成立,时,不成立,时,不成立,时,不成立,时,成立,输出的值为,故选:C.2、C【解析】先求出AB坐标,表示出,规定函数,其中,利用导数求最小值.【详解】联立解得可得点.联立解得可得点.由题意可得解得,令,其中,∴.∴函数单调递减;.因此,的最小值为故选:C【点睛】距离的最值求解:(1)几何法求最值;(2)代数法:表示出距离,利用函数求最值.3、A【解析】根据图象,结合导函数的正负性、极值的定义逐一判断即可.【详解】由图象可知,当时,;当时,,在上单调递增,在上单调递减,可知B错误,A正确;是极大值点,没有极小值,和不是函数的极值点,可知C,D错误故选:A4、A【解析】利用等差中项求出的值,进而可求得的值.【详解】因为得,因此,.故选:A.5、B【解析】根据椭圆的定义求解【详解】由椭圆方程知,所以,故选:B6、A【解析】由函数在上单调递增,可得,从而可求出实数的取值范围【详解】由,得,因为函数在区间上单调递增,所以在区间上恒成立,即恒成立,因为,所以,所以,所以实数的取值范围为,故选:A7、D【解析】由题意,圆心到直线的距离,∴,∵直线∴直线的倾斜角为,∵过分别作的垂线与轴交于两点,∴,故选D.8、C【解析】若p成立则q成立且若q成立不能得到p一定成立,p是q充分不必要条件.【详解】因为>0,<1,所以若p:成立,一定成立,但q:成立,p:不一定成立,所以p是q的充分不必要条件.故选:C.9、B【解析】根据圆的方程,求得圆心距和两圆的半径之和,之差,判断两圆的位置关系求解.【详解】因为圆,圆,所以,,所以,所以两圆相交,所以两圆的公切线的条数为2,故选:B10、B【解析】利用扇形统计图和条形统计图可求出结果【详解】选项A,样本容量为,该选项正确;选项B,根据题意得自主学习的满意率,错误;选项C,样本可以估计总体,但会有一定的误差,总体中对方式二满意人数约为,该选项正确;选项D,样本中对方式一满意人数为,该选项正确.故选:B【点睛】本题主要考查了命题真假的判断,考查扇形统计图和条形统计图等基础知识,考查运算求解能力,属于中档题11、A【解析】根据规律,总结通项公式,即可得答案.【详解】根据规律可知数列的前三项为,所以该数列一个通项公式为故选:A12、B【解析】根据题意,作,且,则四边形ABDE为平行四边形,进一步判断出该四边形为矩形,然后确定出为二面角的平面角,进而通过余弦定理和勾股定理求得答案.【详解】如图,作,且,则四边形ABDE为平行四边形,所以.因为,所以,又,所以是该二面角的一个平面角,即,由余弦定理.因为,,所以,易得四边形ABDE为矩形,则,而,所以平面ACE,则,于是.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、,使得【解析】全称命题改否定,首先把全称量词改成特称量词,然后把后面结论改否定即可.【详解】解:因为命题,总有,所以的否定为:,使得故答案为,使得【点睛】本题考查了全称命题的否定,全称命题(特称命题)改否定,首先把全称量词(特称量词)改成特称量词(全称量词),然后把后面结论改否定即可.14、##0.5【解析】根据两直线平行可得,,即可求出【详解】依题可得,,解得故答案为:15、【解析】由题可求三角形三顶点的坐标,三角形的外接圆的方程即求.【详解】令,得或,则,∴外接圆的圆心的横坐标为2,设,半径为r,由,得,则,即,得,.∴的外接圆的方程为.故答案为:.16、【解析】由题意画出函数图象,把函数有3个不同的零点的问题转化为函数与函数有3个交点的问题,分为和时分类讨论即可.【详解】作出函数的图象如下图所示,要使函数有3个不同的零点,则函数和函数有三个交点,由已知得函数恒过点,当时,过点时,函数和函数有三个交点,将代入得,即,当时,与相切时,此时函数和函数有两个交点,如图所示,,设此时的切点为,则直线的斜率为,直线的方程为,将点代入得,解得,此时的斜率为,将逆时针旋转至和平行时,即为的位置时,函数和函数有三个交点,此时,故的范围为,综上所述实数k的取值范围为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析;(3).【解析】建立空间直角坐标系,求出各点的坐标;(1)用向量的坐标运算证明向量共面,进而证明点共面;(2)利用向量的数量积的坐标运算证明,即可;(3)确定平面EFGHKL的一个法向量,利用空间角度的向量计算公式求得答案.【小问1详解】证明:以D为原点,分别以DA,DC,所在直线为x,y,z轴建立空间直角坐标系,不妨设正方体的棱长为2.则,,,,,,,.可得,,,,,.可得,,,,,所以,,,,共面,又它们过同一点E,所以E,F,G,H,K,L共面.【小问2详解】证明:由(1)得,,又故,,又,所以平面LEF,即平面EFGHKL.【小问3详解】由(2)知,是平面EFGHKL的一个法向量,设与平面EFGHKL所成角为,,,.所以,所以与平面EFGHKL所成角的余弦值为.18、(1)证明见解析(2)【解析】(1)分别证明∥平面,∥平面,最后利用面面平行的判定定理证明平面∥平面即可;(2)由∥得即为直线与所成角,在直角△即可求解.【小问1详解】∵∥且EN平面MNE,BC平面MNE,∴BC∥平面MNE,又∵∥且EM平面MNE,平面MNE,∴∥平面MNE又∵,∴平面∥平面,【小问2详解】由(1)得∥,∴为直线MN与所成的角,设正方体的棱长为a,在△中,,,∴.19、(1)(2)存在,【解析】(1)分斜率存在和斜率不存在两种情况,当斜率存在时,设出直线方程,联立椭圆方程,利用韦达定理列出方程,求出定点坐标,当斜率不存在时,设出点的坐标进行求解;(2)结合第一问的定点坐标,结合直角三角形斜边中线得到存在点,使得为定值,求出结果.【小问1详解】设点,若直线斜率存在时,设直线的方程为:,代入椭圆方程消去并整理得:,可得,因为,所以,即,根据,代入整理可得:,所以,整理化简得:,因为不在直线上,所以,故,于是的方程为,所以直线过定点直线过定点.当直线的斜率不存在时,可得,由得:,得,结合可得:,解得:或(舍).此时直线过点【小问2详解】由(1)可知因为,取中点,则此时,【点睛】直线过定点问题,一般处理思路是分斜率存在和斜率不存在两种情况,特别是斜率存在时,设出直线为,联立后用韦达定理得到两根之和与两根之积,结合题干条件得到等量关系,求出的关系,进而得到定点坐标.20、(1)(2)【解析】(1)设的公比为,根据题意求得的值,即可求得的通项公式;(2)由(1)求得,得到,利用等比数列的求和公式,即可求解.【小问1详解】解:设的公比为,因为,,则,又因为,解得,所以的通项公式为.【小问2详解】解:由,可得,则,所以.21、(1);(2);(3)证明见解析.【解析】(1)根据已知求出即得椭圆的方程;(2)联立直线和椭圆的方程求出弦长和三角形的高即得解;(3)联立直线和椭圆的方程,得到韦达定理,再利用平面向量证明.【小问1详解】解:由题得,所以椭圆方程为,因为椭圆过点所以,所以所以椭圆的方程为.【小问2详解】解:由题得,所以直线的方程为即,联立直线和椭圆方程得,所以,点到直线的距离为.所以的面积为.【小问3详解】解:设直线的方程为,联立直线和椭圆的方程得,设,所以,由题得,,所以,所以,所以,又有公共点,所以三点共线.22、(1)直线的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论