版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省巴东一中2024届数学高二上期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一个公司有8名员工,其中6名员工的月工资分别为5200,5300,5500,6100,6500,6600,另两名员工数据不清楚,那么8位员工月工资的中位数不可能是()A.5800 B.6000C.6200 D.64002.命题“,”的否定是A., B.,C., D.,3.雅言传承文明,经典浸润人生.某市举办“中华经典诵写讲大赛”,大赛分为四类:“诵读中国”经典诵读大赛、“诗教中国”诗词讲解大赛、“笔墨中国”汉字书写大赛、“印记中国”学生篆刻大赛.某人决定从这四类比赛中任选两类参赛,则“诵读中国”被选中的概率为()A. B.C. D.4.设P是抛物线上的一个动点,F为抛物线的焦点.若,则的最小值为()A. B.C.4 D.55.已知椭圆与椭圆,则下列结论正确的是()A.长轴长相等 B.短轴长相等C.焦距相等 D.离心率相等6.从集合中任取两个不同元素,则这两个元素相差的概率为()A. B.C. D.7.设.若,则=()A. B.C. D.e8.在二项式的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,则有理项互不相邻的概率()A. B.C. D.9.三棱柱中,,,,若,则()A. B.C. D.10.已知数列中,,则()A.2 B.C. D.11.命题,,则是()A., B.,C., D.,12.已知直线l:,则下列结论正确的是()A.直线l的倾斜角是B.直线l在x轴上的截距为1C.若直线m:,则D.过与直线l平行的直线方程是二、填空题:本题共4小题,每小题5分,共20分。13.若关于的不等式的解集为R,则的取值范围是______.14.在学习《曲线与方程》的课堂上,老师给出两个曲线方程;,老师问同学们:你想到了什么?能得到哪些结论?下面是四位同学的回答:甲:曲线关于对称;乙:曲线关于原点对称;丙:曲线与坐标轴在第一象限围成的图形面积;丁:曲线与坐标轴在第一象限围成的图形面积;四位同学回答正确的有______(选填“甲、乙、丙、丁”)15.将4名志愿者分配到3个不同的北京冬奥场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为________.(用数字作答)16.在平面直角坐标系xOy中,AB是圆O:x2+y2=1的直径,且点A在第一象限;圆O1:(x﹣a)2+y2=r2(a>0)与圆O外离,线段AO1与圆O1交于点M,线段BM与圆O交于点N,且,则a的取值范围为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)求曲线在点(e,)的切线方程;(2)求函数的单调区间.18.(12分)已知为等差数列,前n项和为,数列是首项为1的等比数列,,,.(1)求和的通项公式;(2)求数列的前n项和.19.(12分)已知抛物线上的点到其焦点F的距离为5.(1)求C的方程;(2)过点的直线l交C于A,B两点,且N为线段的中点,求直线l的方程.20.(12分)给出以下三个条件:①;②,,成等比数列;③.请从这三个条件中任选一个,补充到下面问题中,并完成作答.若选择多个条件分别作答,以第一个作答计分已知公差不为0的等差数列的前n项和为,,______(1)求数列的通项公式;(2)若,令,求数列的前n项和21.(12分)椭圆的左、右焦点分别为,短轴的一个端点到的距离为,且椭圆过点过且不与两坐标轴平行的直线交椭圆于两点,点与点关于轴对称.(1)求椭圆的方程(2)当直线的斜率为1时,求的面积;(3)若点,求证:三点共线.22.(10分)已知椭圆的标准方程为:,若右焦点为且离心率为(1)求椭圆的方程;(2)设,是上的两点,直线与曲线相切且,,三点共线,求线段的长
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】解:∵一个公司有8名员工,其中6名员工的月工资分别为5200,5300,5500,6100,6500,6600,∴当另外两名员工的工资都小于5300时,中位数为(5300+5500)÷2=5400,当另外两名员工的工资都大于5300时,中位数为(6100+6500)÷2=6300,∴8位员工月工资的中位数的取值区间为[5400,6300],∴8位员工月工资的中位数不可能是6400.本题选择D选项.2、C【解析】特称命题的否定是全称命题,改量词,且否定结论,故命题的否定是“”.本题选择C选项.3、B【解析】由已知条件得基本事件总数为种,符合条件的事件数为3中,由古典概型公式直接计算即可.【详解】从四类比赛中选两类参赛,共有种选择,其中“诵读中国”被选中的情况有3种,即“诵读中国”和“诗教中国”,“诵读中国”和“笔墨中国”,“诵读中国”和“印记中国”,由古典概型公式可得,故选:.4、C【解析】作出图形,过点作抛物线准线的垂线,由抛物线的定义得,从而得出,再由、、三点共线时,取最小值得解.【详解】,所以在抛物线的内部,过点作抛物线准线的垂线,由抛物线的定义得,,当且仅当、、三点共线时,等号成立,因此,的最小值为.故选:C.5、C【解析】利用,可得且,即可得出结论【详解】∵,且,椭圆与椭圆的关系是有相等的焦距故选:C6、B【解析】一一列出所有基本事件,然后数出基本事件数和有利事件数,代入古典概型的概率计算公式,即可得解.【详解】解:从集合中任取两个不同元素的取法有、、、、、共6种,其中满足两个元素相差的取法有、、共3种.故这两个元素相差的概率为.故选:B.7、D【解析】由题可得,将代入解方程即可.【详解】∵,∴,∴,解得.故选:D.8、A【解析】先根据前三项的系数成等差数列求,再根据古典概型概率公式求结果【详解】因为前三项的系数为,,,当时,为有理项,从而概率为.故选:A.9、A【解析】利用空间向量线性运算及基本定理结合图形即可得出答案.【详解】解:由,,,若,得.故选:A.10、A【解析】根据数列的周期性即可求解.【详解】由得,显然该数列中的数从开始循环,数列的周期是,所以.故选:A.11、D【解析】根据特称命题的否定为全称命题,即可得到答案.【详解】因为命题,,所以,.故选:D12、D【解析】A.将直线方程的一般式化为斜截式可得;B.令y=0可得;C.求出直线m斜率即可判断;D.设要求直线的方程为,将代入即可.【详解】根据题意,依次分析选项:对于A,直线l:,即,其斜率,则倾斜角是,A错误;对于B,直线l:,令y=0,可得,l在x轴上的截距为,B错误;对于C,直线m:,其斜率,,故直线m与直线l不垂直,C错误;对于D,设要求直线的方程为,将代入,可得t=0,即要求直线为,D正确;故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分为和考虑,当时,根据题意列出不等式组,求出的取值范围.【详解】当得:,满足题意;当时,要想保证关于的不等式的解集为R,则要满足:,解得:,综上:的取值范围为故答案为:14、甲、乙、丙、丁【解析】结合对称性判断甲、乙的正确性;通过对比和与坐标轴在第一象限围成的图形面积来判断丙丁的正确性.【详解】对于甲:交换方程中和的位置得,所以曲线关于对称,甲回答正确.对于乙:和两个点都满足方程,所以曲线关于原点对称,乙回答正确.对于丙:直线与坐标轴在第一象限围成的图形面积为,,,在第一象限,直线与曲线都满足,,,所以在第一象限,直线的图象在曲线的图象上方,所以,丙回答正确.对于丁:圆与坐标轴在第一象限围成的图形面积为,在第一象限,曲线与曲线都满足,,,,所以在第一象限,曲线的图象在曲线的图象下方,所以,丁回答正确.故答案为:甲、乙、丙、丁15、36【解析】先将4人分成2、1、1三组,再安排给3个不同的场馆,由分步乘法计数原理可得.【详解】将4人分到3个不同的体育场馆,要求每个场馆至少分配1人,则必须且只能有1个场馆分得2人,其余的2个场馆各1人,可先将4人分为2、1、1的三组,有种分组方法,再将分好的3组对应3个场馆,有种方法,则共有种分配方案.故答案为:3616、【解析】根据判断出四边形为平行四边形,由此求得圆的方程以及的长,进而判断出点在圆上,根据圆与圆的位置关系,求得的取值范围.【详解】四边形ONO1M为平行四边形,即ON=MO1=r=1,所以圆的方程为,且ON为△ABM的中位线AM=2ON=2AO1=3,故点A在以O1为圆心,3为半径的圆上,该圆的方程为:,故与x2+y2=1在第一象限有交点,即2<a<4,由,解得,故a的取值范围为(,4).故答案为:【点睛】本小题主要考查圆与圆的位置关系,考查化归与转化的数学思想方法,考查数形结合的数学思想方法,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)在单调递减,在单调递增【解析】(1)求出函数的导数,求出切线的斜率,切点坐标,然后求解切线方程;(2)利用导函数的符号,判断函数的单调性,求解函数的单调区间即可【详解】解:(1)由得,所以切线斜率为切点坐标为,所以切线方程为,即;(2),令,得当时,;当时,,∴在单调递减,在单调递增18、(1)的通项公式为,的通项公式为;(2).【解析】(1)用基本量表示题干中的量,联立求解即可;(2)由,,用乘公比错位相减法求和即可.【详解】(1)设等差数列的公差为d,等比数列的公比为q.由已知,得,而,所以,解得,所以.由得.①,由得.②,联立①②解得,所以.故的通项公式为,的通项公式为.(2)设数列的前n项和为,由,得.,,上述两式相减,得,所以,即.19、(1)(2)【解析】(1)根据抛物线的定义可得,求得,即可得出答案;(2)设,利用点差法求出直线l的斜率,再利用直线的点斜式方程即可得出答案.【小问1详解】解:由抛物线定义可知:,解得:,∴C的方程为;【小问2详解】解:设,则,两式作差得,∴直线l的斜率,∵为的中点,∴,∴,∴直线l的方程为,即(经检验,所求直线符合条件).20、(1)(2)【解析】(1)若选①,则根据等差数列的前n项和公式,结合,求得公差,可得答案;若选②,则根据,,成等比数列,列出方程,结合,求得公差,可得答案;若选③,则根据,列出方程,结合,求得公差,可得答案;(2)由(1)可得的表达式,利用错位相减法,求得答案.【小问1详解】设数列的公差为d选择①,由题意得,又,则,所以;选择②,由,,成等比数列,得,即,解得,或(舍去),所以;选择③,由,得,解得,所以【小问2详解】由题意知,∴①②①-②得∴,即.21、(1);(2);(3)证明见解析.【解析】(1)根据已知求出即得椭圆的方程;(2)联立直线和椭圆的方程求出弦长和三角形的高即得解;(3)联立直线和椭圆的方程,得到韦达定理,再利用平面向量证明.【小问1详解】解:由题得,所以椭圆方程为,因为椭圆过点所以,所以所以椭圆的方程为.【小问2详解】解:由题得,所以直线的方程为即,联立直线和椭圆方程得,所以,点到直线的距离为.所以的面积为.【小问3详解】解:设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度生产线建设与产品委托加工合同
- 二零二四年度战略合作合同:互联网企业间业务合作协议
- 二零二四年版权质押贷款合同3篇
- 2024年度跨国企业清算与并购合同2篇
- 二零二四年度技术开发合作补充协议
- 二零二四年度企业办公自动化设备采购合同
- 二零二四年度珠宝设计及制作合同
- 二零二四年度版权购买合同详细内容
- 二零二四年度煤矸石砖付款与交货合同
- 二零二四年度进出口贸易融资借款合同
- 湖北省鄂东南省级示范高中教育教学改革联盟学校2024-2025学年高一上学期期中联考生物试题(含答案)
- 2024年城市公共绿地养护及保洁合同
- 河南省信阳市普通高中2024-2025学年高一上学期期中考试语文试卷(无答案)
- 山东省德州市德城区2024-2025学年八年级上学期期中生物学试题(含答案)
- 2024年光缆敷设及维护合同
- 化工厂设备安装施工方案
- 疫情期间学生德育工作总结
- 中级养老护理练习题库(含参考答案)
- 绿色体育场馆
- 期中试卷(1-4单元)(试题)-2024-2025学年五年级上册数学人教版
- 2024年秋季新外研版3年级上册英语课件 Unit 6 第4课时(Fuel up)
评论
0/150
提交评论