版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题02 数的整除性阅读与思考设,是整数,≠0,如果一个整数使得等式=成立,那么称能被整除,或称整除,记作|,又称为的约数,而称为的倍数.解与整数的整除相关问题常用到以下知识:1.数的整除性常见特征:①若整数的个位数是偶数,则2|;②若整数的个位数是0或5,则5|;③若整数的各位数字之和是3(或9)的倍数,则3|(或9|);④若整数的末二位数是4(或25)的倍数,则4|(或25|);⑤若整数的末三位数是8(或125)的倍数,则8|(或125|);⑥若整数的奇数位数字和与偶数位数字和的差是11的倍数,则11|.2.整除的基本性质设,,都是整数,有:①若|,|,则|;②若|,|,则|(±);③若|,|,则[,]|;④若|,|,且与互质,则|;⑤若|,且与互质,则|.特别地,若质数|,则必有|或|.例题与求解【例1】在1,2,3,…,2000这2000个自然数中,有_______个自然数能同时被2和3整除,而且不能被5整除.(“五羊杯”竞赛试题)解题思想:自然数能同时被2和3整除,则能被6整除,从中剔除能被5整除的数,即为所求.【例2】已知,是正整数(>),对于以下两个结论:①在+,,-这三个数中必有2的倍数;②在+,,-这三个数中必有3的倍数.其中( )A.只有①正确 B.只有②正确 C.①,②都正确 D.①,②都不正确(江苏省竞赛试题)解题思想:举例验证,或按剩余类深入讨论证明.【例3】已知整数能被198整除,求,的值.(江苏省竞赛试题)解题思想:198=2×9×11,整数能被9,11整除,运用整除的相关特性建立,的等式,求出,的值.【例4】已知,,都是整数,当代数式7+2+3的值能被13整除时,那么代数式5+7-22的值是否一定能被13整除,为什么?(“华罗庚金杯”邀请赛试题)解题思想:先把5+7-22构造成均能被13整除的两个代数式的和,再进行判断.【例5】如果将正整数M放在正整数左侧,所得到的新数可被7整除,那么称M为的“魔术数”(例如:把86放在415左侧,得到86415能被7整除,所以称86为415的魔术数),求正整数的最小值,使得存在互不相同的正整数,,…,,满足对任意一个正整数,在,,…,中都至少有一个为的“魔术数”.(2013年全国初中数学竞赛试题)解题思想:不妨设(=1,2,3,…,;=0,1,2,3,4,5,6)至少有一个为的“魔术数”.根据题中条件,利用(是的位数)被7除所得余数,分析的取值.【例6】一只青蛙,位于数轴上的点,跳动一次后到达,已知,满足|-|=1,我们把青蛙从开始,经-1次跳动的位置依次记作:,,,…,.⑴写出一个,使其,且++++>0;⑵若=13,=2012,求的值;⑶对于整数(≥2),如果存在一个能同时满足如下两个条件:①=0;②+++…+=0.求整数(≥2)被4除的余数,并说理理由.(2013年“创新杯”邀请赛试题)解题思想:⑴.即从原点出发,经过4次跳动后回到原点,这就只能两次向右,两次向左.为保证++++>0.只需将“向右”安排在前即可.⑵若=13,=2012,从经过1999步到.不妨设向右跳了步,向左跳了步,则,解得可见,它一直向右跳,没有向左跳.⑶设同时满足两个条件:①=0;②+++…+=0.由于=0,故从原点出发,经过(-1)步到达,假定这(-1)步中,向右跳了步,向左跳了步,于是=-,+=-1,则+++…+=0+()+()+…()=2(++…+)-[()+()+…+()]=2(++…+)-.由于+++…+=0,所以(-1)=4(++…+).即4|(-1).能力训练A级1.某班学生不到50人,在一次测验中,有的学生得优,的学生得良,的学生得及格,则有________人不及格.2.从1到10000这1万个自然数中,有_______个数能被5或能被7整除.(上海市竞赛试题)3.一个五位数能被11与9整除,这个五位数是________.4.在小于1997的自然数中,是3的倍数而不是5的倍数的数的个数是( )A.532 B.665 C.133 D.7985.能整除任意三个连续整数之和的最大整数是( )A.1 B.2 C.3 D.6(江苏省竞赛试题)6.用数字1,2,3,4,5,6组成的没有重复数字的三位数中,是9的倍数的数有( )A.12个 B.18个 C.20个 D.30个(“希望杯”邀请赛试题)7.五位数是9的倍数,其中是4的倍数,那么的最小值为多少?(黄冈市竞赛试题)8.1,2,3,4,5,6每个使用一次组成一个六位数字,使得三位数,,,能依次被4,5,3,11整除,求这个六位数.(上海市竞赛试题)9.173□是个四位数字,数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9,11,6整除.”问:数学老师先后填入的这3个数字的和是多少?(“华罗庚金杯”邀请赛试题)B级1.若一个正整数被2,3,…,9这八个自然数除,所得的余数都为1,则的最小值为_________,的一般表达式为____________.(“希望杯”邀请赛试题)2.已知,都是正整数,若1≤≤≤30,且能被21整除,则满足条件的数对(,)共有___________个.(天津市竞赛试题)3.一个六位数能被33整除,这样的六位数中最大是__________.4.有以下两个数串同时出现在这两个数串中的数的个数共有( )个.A.333 B.334 C.335 D.3365.一个六位数能被12整除,这样的六位数共有( )个.A.4 B.6 C.8 D.126.若1059,1417,2312分别被自然数除时,所得的余数都是,则-的值为( ).A.15 B.1 C.164 D.1747.有一种室内游戏,魔术师要求某参赛者相好一个三位数,然后,魔术师再要求他记下五个数:,,,,,并把这五个数加起来求出和N.只要讲出的大小,魔术师就能说出原数是什么.如果N=3194,请你确定.(美国数学邀请赛试题)8.一个正整数N的各位数字不全相等,如果将N的各位数字重新排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正好等于原来的数N,则称N为“拷贝数”,试求所有的三位“拷贝数”.(武汉市竞赛试题)9.一个六位数,如将它的前三位数字与后三位数字整体互换位置,则所得的新六位数恰为原数的6倍,求这个三位数.(“五羊杯”竞赛试题)10.一个四位数,这个四位数与它的各位数字之和为1999,求这个四位数,并说明理由.(重庆市竞赛试题)11.从1,2,…,9中任取个数,其中一定可以找到若干个数(至少一个,也可以是全部),它们的和能被10整除,求的最小值.(2013年全国初中数学竞赛试题)专题02数的整除性例1267提示:333-66=267.例2C提示:关于②的证明:对于a,b若至少有一个是3的倍数,则ab是3的倍数.若a,b都不是3的倍数,则有:(1)当a=3m+1,b=3n+1时,a-b=3(m-n);(2)当a=3m+1,b=3n+2时,a+b=3(m+n+1);(3)当a=3m+2,b=3n+1时,a+b=3(m+n+1);(4)当a=3m+2,b=3n+2时,a-b=3(m-n).例3a=8.b=0提示:由9|(19+a+b)得a+b=8或17;由11|(3+a-b)得a-b=8或-3.例4设x,y,z,t是整数,并且假设5a+7b-22c=x(7a+2b+3c)+13(ya+zb+tc).比较上式a,b,c的系数,应当有,取x=-3,可以得到y=2,z=1,t=-1,则有13(2a+b-c)-3(7a+2b+3c)=5a+7b-22c.既然3(7a+2b+3c)和13(2a+b-c)都能被13整除,则5a+7b-22c就能被13整除.例5考虑到“魔术数”均为7的倍数,又a1,a2,…,an互不相等,不妨设a1<a2<…<an,余数必为1,2,3,4,5,6,0,设ai=ki+t(i=1,2,3,…,n;t=0,1,2,3,4,5,6),至少有一个为m的“魔术数”,因为ai·10k+m(k是m的位数),是7的倍数,当i≤b时,而ai·t除以7的余数都是0,1,2,3,4,5,6中的6个;当i=7时,而ai·10k除以7的余数都是0,1,2,3,4,5,6这7个数字循环出现,当i=7时,依抽屉原理,ai·10k与m二者余数的和至少有一个是7,此时ai·10k+m被7整除,即n=7.例6(1)A5:0,1,2,1,0.(或A5:0,1,0,1,0)(2)a1000=13+999=1012.(3)n被4除余数为0或1.A级1.12.31433.397984.A5.C6.B7.五位数EQ\o\ac(\S\UP7(—),abcde)=10×EQ\o\ac(\S\UP7(—),abcd)+e.又∵EQ\o\ac(\S\UP7(——),abcd)为4的倍数.故最值为1000,又因为EQ\o\ac(\S\UP7(—),abcde)为9的倍数.故1+0+0+0+e能被9整除,所以e只能取8.因此EQ\o\ac(\S\UP7(—),abcde)最小值为10008.8.324561提示:d+f-e是11的倍数,但6≤d+f≤5+6=11,1≤e≤6,故0≤d+f-e≤10,因此d+f-e=0,即5+f=e,又e≤d,f≥1,故f=l,e=6,9.19提示:1+7+3+□的和能被9整除,故□里只能填7,同理,得到后两个数为8,4.B级1.2521a=2520n+1(n∈N+)2.573.719895提示:这个数能被33整除,故也能被3整除.于是,各位数字之和(x+1+9+8+9+y)也能被3整除,故x+y能被3整除.4.B5.B6.A提示:两两差能被n整除,n=179,m=164.7.由题意得EQ\o\ac(\S\UP7(—),acb)+EQ\o\ac(\S\UP7(—),bac)+EQ\o\ac(\S\UP7(—),bca)+EQ\o\ac(\S\UP7(—),cab)+EQ\o\ac(\S\UP7(—),cba)=3194,两边加上EQ\o\ac(\S\UP7(—),abc).得222(a+b+c)=3194+EQ\o\ac(\S\UP7(—),abc)∴222(a+b+c)=222×14+86+EQ\o\ac(\S\UP7(—),abc).则EQ\o\ac(\S\UP7(—),abc)+86是222的倍数.且a+b+c>14.设EQ\o\ac(\S\UP7(——),abc)+86=222n考虑到EQ\o\ac(\S\UP7(——),abc)是三位数,依次取n=1,2,3,4.分别得出EQ\o\ac(\S\UP7(——),abc)的可能值为136,358,580,802,又因为a+b+c>14.故EQ\o\ac(\S\UP7(——),abc)=358.8.设N为所求的三位“拷贝数”,它的各位数字分别为a,b,c(a,b,c不全相等).将其数码重新排列后,设其中最大数为EQ\o\ac(\S\UP7(——),abc),则最小数为EQ\o\ac(\S\UP7(——),cba).故N=EQ\o\ac(\S\UP7(——),abc)-EQ\o\ac(\S\UP7(——),cba)=(100a+10b+c)-(100c+10b+a)=99(a-c).可知N为99的倍数.这样的三位数可能是198,297,396,495,594,693,792,891,990.而这9个数中,只有954-459=495.故495是唯一的三位“拷贝数”.9.设原六位数为EQ\o\ac(\S\UP7(———),abcdef),则6×EQ\o\ac(\S\UP7(———),abcdef)=EQ\o\ac(\S\UP7(———),defabc),即6×(1000×EQ\o\ac(\S\UP7(——),abc)+EQ\o\ac(\S\UP7(——),def))=1000×EQ\o\ac(\S\UP7(——),def)+EQ\o\ac(\S\UP7(——),abc),所以994×EQ\o\ac(\S\UP7(——),def)-5999×EQ\o\ac(\S\UP7(——),abc),即142×EQ\o\ac(\S\UP7(——),d
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版不锈钢宣传栏安装工程合同变更合同2篇
- 2025年消防器材采购与仓储配送合同协议3篇
- 2025年旋挖钻机购销及智能化升级改造合同3篇
- 2025年无财产债务家庭子女生活费用及教育补贴协议3篇
- 二零二五版采砂船运输安全责任合同范本3篇
- 2025年汽车改装合同范本3篇
- 基于物联网的2025年度物业管理信息系统构建合同3篇
- 2025年虾池承包养殖项目合作协议3篇
- 2025年私人房产转让协议书(含家具家电+车位+智能家居+物业管理+装修+家具包年+车位包年+物业管理费)3篇
- 二零二五年度房屋买卖居间服务合同违约责任合同3篇
- 稽核管理培训
- 电梯曳引机生锈处理方案
- 电力电缆故障分析报告
- 中国电信网络资源管理系统介绍
- 2024年浙江首考高考选考技术试卷试题真题(答案详解)
- 《品牌形象设计》课件
- 仓库管理基础知识培训课件1
- 药品的收货与验收培训课件
- GH-T 1388-2022 脱水大蒜标准规范
- 高中英语人教版必修第一二册语境记单词清单
- 政府机关保洁服务投标方案(技术方案)
评论
0/150
提交评论