吉林一中 2023年数学高二上期末达标检测试题含解析_第1页
吉林一中 2023年数学高二上期末达标检测试题含解析_第2页
吉林一中 2023年数学高二上期末达标检测试题含解析_第3页
吉林一中 2023年数学高二上期末达标检测试题含解析_第4页
吉林一中 2023年数学高二上期末达标检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林一中2023年数学高二上期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称递减的比例(即百分比)为“衰分比”.如:甲、乙、丙、丁分别分得,,,,递减的比例为,那么“衰分比”就等于,今共有粮石,按甲、乙、丙、丁的顺序进行“衰分”,已知乙分得石,甲、丙所得之和为石,则“衰分比”为()A. B.C. D.2.已知双曲线C:-=1(a>b>0)的左焦点为F1,若过原点倾斜角为的直线与双曲线C左右两支交于M、N两点,且MF1NF1,则双曲线C的离心率是()A.2 B.C. D.3.“冰雹猜想”数列满足:,,若,则()A.4 B.3C.2 D.14.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.8 B.16C. D.5.已知抛物线:的焦点为,为上一点且在第一象限,以为圆心,为半径的圆交的准线于,两点,且,,三点共线,则()A.2 B.4C.6 D.86.某考点配备的信号检测设备的监测范围是半径为100米的圆形区域,一名工作人员持手机以每分钟50米的速度从设备正东方向米的处出发,沿处西北方向走向位于设备正北方向的处,则这名工作人员被持续监测的时长为()A.1分钟 B.分钟C.2分钟 D.分钟7.已知函数,则()A.1 B.2C.3 D.58.如图已知正方体,点是对角线上的一点且,,则()A.当时,平面 B.当时,平面C.当为直角三角形时, D.当的面积最小时,9.在等差数列中,为其前项和,若.则()A. B.C. D.10.已知向量,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件11.已知双曲线:的左、右焦点分别为,,且,点是的右支上一点,且,,则双曲线的方程为()A. B.C. D.12.已知两个向量,,且,则的值为()A.-2 B.2C.10 D.-10二、填空题:本题共4小题,每小题5分,共20分。13.用秦九韶算法求函数,当时的值时,___________14.在等比数列中,若,是方程两根,则________.15.已知向量,,且,则实数______.16.如图,在长方体ABCD—A1B1C1D1中,AB=3,AD=3,AA1=4,P是侧面BCC1B1上的动点,且AP⊥BD1,记点P到平面ABCD的距离为d,则d的最大值为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点,圆,点Q在圆上运动,的垂直平分线交于点P.(1)求动点P的轨迹的方程;(2)过点的动直线l交曲线C于A、B两点,在y轴上是否存在定点T,使以AB为直径的圆恒过这个点?若存在,求出点T的坐标,若不存在,请说明理由.18.(12分)已知椭圆的长轴长与短轴长之比为2,、分别为其左、右焦点.请从下列两个条件中选择一个作为已知条件,完成下面的问题:①过点且斜率为1的直线与椭圆E相切;②过且垂直于x轴的直线与椭圆在第一象限交于点P,且的面积为.(只能从①②中选择一个作为已知)(1)求椭圆E的方程;(2)过点的直线l与椭圆E交于A,B两点,与直线交于H点,若,.证明:为定值19.(12分)“双十一”已经成为网民们的网购狂欢节,某电子商务平台对某市的网民在今年“双十一”的网购情况进行摸底调查,用随机抽样的方法抽取了100人,其消费金额(百元)的频率分布直方图如图1所示:(1)利用图1,求网民消费金额的平均值和中位数;(2)把下表中空格里的数填上,能否有的把握认为网购消费与性别有关.男女合计30合计45附表:P(χ2≥k0)0.100.050.012.7063.8416.635参考公式:χ2=.20.(12分)已知椭圆的左、右焦点分别为,过右焦点作直线交于,其中的周长为的离心率为.(1)求的方程;(2)已知的重心为,设和的面积比为,求实数的取值范围.21.(12分)等差数列前n项和为,且(1)求通项公式;(2)记,求数列的前n项和22.(10分)在平面直角坐标系中,过点的直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(1)求直线的普通方程和曲线的直角坐标方程;(2)设曲线与直线交于,两点,求线段的中点的直角坐标及的值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意,设衰分比为,甲分到石,,然后可得和,解出、的值即可【详解】根据题意,设衰分比为,甲分到石,,又由今共有粮食石,按甲、乙、丙、丁的顺序进行“衰分”,已知乙分得90石,甲、丙所得之和为164石,则,,解得:,,故选:A2、C【解析】根据双曲线和直线的对称性,结合矩形的性质、双曲线的定义、离心率公式、余弦定理进行求解即可.【详解】设双曲线的右焦点为F2,过原点倾斜角为的直线为,设M、N分别在第三、第一象限,由双曲线和直线的对称性可知:M、N两点关于原点对称,而MF1NF1,因此四边形是矩形,而,所以是等边三角形,故,因此,因为,所以,在等腰三角形中,由余弦定理可知:,由矩形的性质可知:,由双曲线的定义可知:,故选:C【点睛】关键点睛:利用矩形的性质、双曲线的定义是解题的关键.3、A【解析】根据题意分别假设为奇数、偶数的情况,求出对应的即可.【详解】由题意知,因为,若为奇数时,,与为奇数矛盾,不符合题意;若为偶数时,,可得,符合题意.不符合故选:A4、C【解析】画出直观图,利用椎体体积公式进行求解.【详解】画出直观图,为四棱锥A-BCDE,其中BC=4,BE=2,AE=2,且BE,AE,DE两两垂直,故体积为.故选:C5、B【解析】根据,,三点共线,结合点到准线的距离为2,得到,再利用抛物线的定义求解.【详解】如图所示:∵,,三点共线,∴是圆的直径,∴,轴,又为的中点,且点到准线的距离为2,∴,由抛物线的定义可得,故选:B.6、C【解析】以设备的位置为坐标原点,其正东方向为轴正方向,正北方向为轴正方向建立平面直角坐标系,求得直线和圆的方程,利用点到直线的距离公式和圆的弦长公式,求得的长,进而求得持续监测的时长.【详解】以设备的位置为坐标原点,其正东方向为轴正方向,正北方向为轴正方向建立平面直角坐标系,如图所示,则,,可得,圆记从处开始被监测,到处监测结束,因为到的距离为米,所以米,故监测时长为分钟故选:C.7、C【解析】利用导数的定义,以及运算法则,即可求解.【详解】,,所以,所以故选:C8、D【解析】建立空间直角坐标系,利用空间向量法一一计算可得;【详解】解:由题可知,如图令正方体的棱长为1,建立空间直角坐标系,则,,,,,,,所以,因为,所以,所以,,,,设平面的法向量为,则,令,则,,所以对于A:若平面,则,则,解得,故A错误;对于B:若平面,则,即,解得,故B错误;当为直角三角形时,有,即,解得或(舍去),故C错误;设到的距离为,则,当的面积最小时,,故正确故选:9、C【解析】利用等差数列的性质和求和公式可求得的值.【详解】由等差数列的性质和求和公式可得.故选:C.10、A【解析】根据平面向量垂直的性质,结合平面向量数量积的坐标表示公式、充分性、必要性的定义进行求解判断即可.详解】当时,有,显然由,但是由不一定能推出,故选:A11、B【解析】画出图形,利用已知条件转化求解,关系,利用,解得,即可得到双曲线的方程【详解】由题意双曲线的图形如图,连接与轴交于点,设,,因为,所以,因为,所以,则,因为点是的右支上一点,所以,所以,则,因为,所以,,由勾股定理可得:,即,解得,则,所以双曲线的方程为:故选:B12、C【解析】根据向量共线可得满足的关系,从而可求它们的值,据此可得正确的选项.【详解】因为,故存在常数,使得,所以,故,所以,故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、0【解析】利用秦九韶算法的定义计算即可.【详解】故答案为:014、.【解析】由题意求得,,再结合等比数列的性质,即可求解.【详解】由题意知,,是方程的两根,可得,,又由,,所以,,可得,又由,所以.故答案为:.【点睛】本题主要考查了等比数列的通项公式,以及等比数列的性质的应用,其中解答中熟练应用等比数列的性质是解答的关键,着重考查了推理与运算能力,属于基础题.15、【解析】利用向量平行的条件直接解出.【详解】因为向量,,且,所以,解得.故答案为:.16、##【解析】以为坐标原点,建立空间直角坐标系,求得的坐标之间的关系,以及坐标的范围,即可求得结果.【详解】以D为原点,为x轴,为y轴,为z轴,建立空间直角坐标系如下所示:设,则,,∵,∴,解得,因为,所以c的最大值为,即点P到平面的距离d的最大值为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在,T(0,1)﹒【解析】(1)根据椭圆的定义,结合即可求P的轨迹方程;(2)假设存在T(0,t),设AB方程为,联立直线方程和椭圆方程,代入=0即可求出定点T.【小问1详解】由题可知,,则,由椭圆定义知P的轨迹是以F1、为焦点,且长轴长为的椭圆,∴,∴,∴P的轨迹方程为C:;【小问2详解】假设存在T(0,t)满足题意,易得AB的斜率一定存在,否则不会存在T满足题意,设直线AB的方程为,联立,化为,易知恒成立,∴(*)由题可知,将(*)代入可得:即∴,解,∴在y轴上存在定点T(0,1),使以AB为直径的圆恒过这个点T.18、(1)(2)证明见解析【解析】(1)选①:直线与椭圆联立,利用判别式为0求解;选②:利用通径公式即可(2)用直线参数方程的几何意义求解【小问1详解】选①:由题知,过点且斜率为1的直线方程为联立,得由,得所以椭圆的方程为选②:由题知,所以由,得所以椭圆的方程为【小问2详解】证明:设直线的参数方程为(为参数)设A,B,H对应的参数分别为,显然将代入椭圆,得即.所以将代入直线,得由,得,所以由,得,所以所以所以为定值【点睛】关键点点睛:直线的参数方程作为一种工具,要充分发挥它的作用,参数的几何意义并不局限于加绝对值表示距离,还要注意方向性.请考生在22、23题中任选一题做答,如果多做,则按所做的第一题计分19、(1),(2)列联表见解析,没有【解析】(1)根据平均数的定义求平均数,由于前2组的频率和恰好为,从而可求出中位数,(2)根据频率分布表结合已知的数据计算完成列联表,然后计算χ2公式计算χ2,再根据临界值表比较可得结论【小问1详解】以每组的中间值代表本组的消费金额,则网民消费金额的平均值为0.频率直方图中第一组、第二组的频率之和为,中位数;【小问2详解】把下表中空格里的数填上,得列联表如下;男女合计252550203050合计4555100计算,所以没有的把握认为网购消费与性别有关.20、(1)(2)【解析】(1)已知焦点弦三角形的周长,以及离心率求椭圆方程,待定系数直接求解即可.(2)第一步设点设直线,第二步联立方程韦达定理,第三步条件转化,利用三角形等面积法,列方程,第四步利用韦达定理进行转化,计算即可.【小问1详解】因为的周长为,的离心率为,所以,,所以,,又,所以椭圆的方程为.【小问2详解】方法一:,,的面积为,的面积为,则,得,①设,与椭圆C方程联立,消去得,由韦达定理得,.令,②则,可得当时,当时,所以,又解得③由①②③得,解得.所以实数的取值范围是.方法二:同方法一可得的面积为,的面积为,则,得,①设,与椭圆C方程联立,消去得,由韦达定理得,.所以因为,所以解得②由①②解得.所以实数的取值范围是.21、(1);(2).【解析】(1)设等差数列的公差为,根据已知条件求,利用等差数列的通项公式可求得数列的通项公式.(2)求得,利用裂项相消法即可求得.【小问1详解】设等差数列的公差为,由,解得,所以,故数列的通项公式;【小问2详解】由(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论