广西南宁市三中2023-2024学年高二上数学期末质量检测模拟试题含解析_第1页
广西南宁市三中2023-2024学年高二上数学期末质量检测模拟试题含解析_第2页
广西南宁市三中2023-2024学年高二上数学期末质量检测模拟试题含解析_第3页
广西南宁市三中2023-2024学年高二上数学期末质量检测模拟试题含解析_第4页
广西南宁市三中2023-2024学年高二上数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西南宁市三中2023-2024学年高二上数学期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则()A. B.1C. D.2.已知函数,则函数在点处的切线方程为()A. B.C. D.3.如图,平行六面体中,为的中点,,,,则()A. B.C. D.4.已知圆与圆外切,则()A. B.C. D.5.直线与直线的位置关系是()A.相交但不垂直 B.平行C.重合 D.垂直6.已知空间向量,,,下列命题中正确的个数是()①若与共线,与共线,则与共线;②若,,非零且共面,则它们所在的直线共面;⑧若,,不共面,那么对任意一个空间向量,存在唯一有序实数组,使得;④若,不共线,向量,则可以构成空间的一个基底.A.0 B.1C.2 D.37.将直线绕着原点逆时针旋转,得到新直线的斜率是()A. B.C. D.8.若,在直线l上,则直线l一个方向向量为()A. B.C. D.9.设.若,则=()A. B.C. D.e10.设为数列的前n项和,且,则=()A.26 B.19C.11 D.911.若数列{an}满足……,则称数列{an}为“半差递增”数列.已知“半差递增”数列{cn}的前n项和Sn满足,则实数t的取值范围是()A. B.(-∞,1)C. D.(1,+∞)12.等比数列的公比为q,前n项和为,设甲:,乙:是递增数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件二、填空题:本题共4小题,每小题5分,共20分。13.从正方体的8个顶点中选取4个作为项点,可得到四面体的概率为________14.若直线与直线平行,且原点到直线的距离为,则直线的方程为____________.15.在长方体中,设,,则异面直线与所成角的大小为______16.已知数列{}的通项公式为,前n项和为,当取得最小值时,n的值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列中,首项,公差,且数列的前项和为(1)求和;(2)设,求数列的前项和18.(12分)已知集合,,.(1)求;(2)若“”是“”的必要不充分条件,求实数a的取值范围.19.(12分)新冠疫情下,有一学校推出了食堂监管力度的评价与食品质量的评价系统,每项评价只有合格和不合格两个选项,师生可以随时进行评价,某工作人员利用随机抽样的方法抽取了200位师生的信息,发现对监管力度满意的占75%,对食品质量满意的占60%,其中对监管力度和食品质量都满意的有80人.(1)完成列联表,试问:是否有99%的把握判断监管力度与食品质量有关联?监督力度情况食品质量情况对监督力度满意对监督力度不满意总计对食品质量满意80对食品质量不满意总计200(2)为了改进工作作风,针对抽取的200位师生,对监管力度不满意的人抽取3位征求意见,用X表示3人中对监管力度与食品质量都不满意的人数,求X的分布列与均值.参考公式:,其中.参考数据:①当时,有90%的把握判断变量A、B有关联;②当时,有95%的把握判断变量A、B有关联;③当时,有99%的把握判断变量A、B有关联.20.(12分)已知等比数列的公比,且,的等差中项为5,.(1)求数列的通项公式;(2)设,求数列的前项和.21.(12分)已知点F为抛物线的焦点,点在抛物线上,且.(1)求该抛物线的方程;(2)若点A在第一象限,且抛物线在点A处的切线交y轴于点M,求的面积.22.(10分)如图,在四棱锥中,底面,底面是边长为2的正方形,,F,G分别是,的中点(1)求证:平面;(2)求平面与平面的夹角的大小

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先根据共轭复数的定义可得,再根据复数的运算法则即可求出【详解】因为,所以故选:B2、C【解析】依据导数几何意义去求函数在点处的切线方程即可解决.【详解】则,又则函数在点处的切线方程为,即故选:C3、B【解析】先用向量与表示,然后用向量表示向量与,即可得解【详解】解:为的中点,故选:【点睛】本题考查了平面向量基本定理的应用,解决本题的关键是熟练运用向量的加法、减法及实数与向量的积的运算,属于基础题4、D【解析】根据两圆外切关系,圆心距离等于半径的和列方程求参数.【详解】由题设,两圆圆心分别为、,半径分别为1、r,∴由外切关系知:,可得.故选:D.5、C【解析】把直线化简后即可判断.【详解】直线可化为,所以直线与直线的位置关系是重合.故选:C6、B【解析】用向量共线或共面的基本定理即可判断.【详解】若与,与共线,,则不能判定,故①错误;若非零向量共面,则向量可以在一个与组成的平面平行的平面上,故②错误;不共面,意味着它们都是非零向量,可以作为一组基底,故③正确;,∴与共面,故不能组成一个基底,故④错误;故选:C.7、B【解析】由题意知直线的斜率为,设其倾斜角为,将直线绕着原点逆时针旋转,得到新直线的斜率为,化简求值即可得到答案.【详解】由知斜率为,设其倾斜角为,则,将直线绕着原点逆时针旋转,则故新直线的斜率是.故选:B.8、C【解析】利用直线的方向向量的定义直接求解.【详解】因为,在直线l上,所以直线l的一个方向向量为.故选:C.9、D【解析】由题可得,将代入解方程即可.【详解】∵,∴,∴,解得.故选:D.10、D【解析】先求得,然后求得.【详解】依题意,当时,,当时,,,所以,所以.故选:D11、A【解析】根据,利用递推公式求得数列的通项公式.再根据新定义的意义,代入解不等式即可求得实数的取值范围.【详解】因为所以当时,两式相减可得,即,所以数列是以公比的等比数列当时,所以,则由“差半递增”数列的定义可知化简可得解不等式可得即实数的取值范围为故选:A.12、B【解析】当时,通过举反例说明甲不是乙的充分条件;当是递增数列时,必有成立即可说明成立,则甲是乙的必要条件,即可选出答案【详解】由题,当数列为时,满足,但是不是递增数列,所以甲不是乙的充分条件若是递增数列,则必有成立,若不成立,则会出现一正一负的情况,是矛盾的,则成立,所以甲是乙的必要条件故选:B【点睛】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程二、填空题:本题共4小题,每小题5分,共20分。13、【解析】计算出正方体的8个顶点中选取4个作为项点的取法和分从上底面取一个点下底面取三个点、从上底面取二个点下底面取二个点、从上底面取三个点下底面取一个点可得到四面体的取法,由古典概型概率计算公式可得答案.【详解】正方体的8个顶点中选取4个作为项点,共有取法,可得到四面体的情况有从上底面取一个点下底面取三个点有种;从上底面取二个点下底面取二个点有种,其中当上底面和下底面取的四个点在同一平面时共有10种情况不符合,此种情况共有种;从上底面取三个点下底面取一个点有种;一个有种,所以可得到四面体的概率为.故答案为:.14、【解析】可设直线的方程为,利用点到直线的距离公式求得,即可得解.【详解】可设直线的方程为,即,则原点到直线的距离为,解得,所以直线的方程为.故答案为:.15、##【解析】建立空间直角坐标系,用向量法即可求出异面直线与所成的角.【详解】以为原点,所在直线分别为轴,轴,轴,建立空间直角坐标系,则,所以,因为,所以,即,所以异面直线与所成的角为.故答案为:90°.16、7【解析】首先求出数列的正负项,再判断取得最小值时n的值.【详解】当,,解得:,当和时,,所以取得最小值时,.故答案为:7三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)根据题意,结合等差数列的通项公式与求和公式,即可求解;(2)根据题意,求出,结合等差数列求和公式,即可求解.【小问1详解】根据题意,易知;.【小问2详解】根据题意,易知,因为,所以数列是首项为2,公差为的等差数列,故18、(1).(2).【解析】分析:(1)先求出A,B集合的解集,A集合求定义,B集合解不等式即可,然后由交集定义即可得结论;(2)若“”是“”的必要不充分条件,说明且,然后根据集合关系求解.详解:(1),.则(2),因为“”是“”的必要不充分条件,所以且.由,得,解得.经检验,当时,成立,故实数的取值范围是.点睛:考查定义域,解不等式,交集的定义以及必要不充分条件,正确求解集合,缕清集合间的基本关系是解题关键,属于基础题.19、(1)列联表见解析,有99%的把握判断监管力度与食品质量有关联;(2)X的分布列见解析,X的期望为【解析】(1)根据给定条件完善列联表,再计算的观测值并结合给定数据即可作答.(2)求出X的可能值及各个值对应的概率列出X的分布列,再计算期望作答.【小问1详解】对监管力度满意的有,对食品质量满意的有,列联表如下:对监督力度满意对监督力度不满意总计对食品质量满意8040120对食品质量不满意701080总计15050200则的观测值为:,所以有99%的把握判断监管力度与食品质量有关联.【小问2详解】由(1)及已知得,X的所有可能值为:0,1,2,3,,,,,X的分布列为:X0123PX的期望为:.【点睛】易错点睛:独立性检验得出的结论是带有概率性质的,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释20、(1);(2).【解析】(1)根据条件列关于首项与公比的方程组,解得结果代入等比数列通项公式即可;(2)利用错位相减法求和即可.【详解】解析:(1)由题意可得:,∴∵,∴,∴数列的通项公式为.(2)∴上述两式相减可得∴【点睛】本题考查等比数列通项公式、错位相减法求和,考查基本分析求解能力,属中档题.21、(1);(2)10.【解析】(1)由根据抛物线的定义求出可得抛物线方程;(2)求出抛物线过点A的切线,得出点M的坐标即可求三角形面积.【小问1详解】由抛物线的定义可知,即,抛物线的方程为.【小问2详解】,且A在第一象限,,即A(4,4),显然切线的斜率存在,故可设其方程为,由,消去得,即,令,解得,切线方程为.令x=0,得,即,又,,.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论