版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省汕头市达濠华桥中学、东厦中学2024届高二上数学期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线的方向向量为,则直线l的倾斜角为()A.30° B.60°C.120° D.150°2.下列结论中正确的个数为()①,;②;③A.0 B.1C.2 D.33.如下图,边长为2的正方体中,O是正方体的中心,M,N,T分别是棱BC,,的中点,下列说法错误的是()A. B.C. D.到平面MON的距离为14.已知双曲线的焦点在y轴上,且实半轴长为4,虚半轴长为5,则双曲线的标准方程为()A.=1 B.=1C.=1 D.=15.已知F是双曲线的右焦点,过F且垂直于x轴的直线交E于A,B两点,若E的渐近线上恰好存在四个点,,,,使得,则E的离心率的取值范围是()A. B.C. D.6.已知、分别为双曲线的左、右焦点,且,点P为双曲线右支一点,为的内心,若成立,给出下列结论:①点的横坐标为定值a;②离心率;③;④当轴时,上述结论正确的是()A.①② B.②③C.①②③ D.②③④7.已知,是圆上的两点,是直线上一点,若存在点,,,使得,则实数的取值范围是()A. B.C. D.8.在等比数列中,,则等于()A. B.C. D.9.若,则图像上的点的切线的倾斜角满足()A.一定为锐角 B.一定为钝角C.可能为 D.可能为直角10.已知为等差数列,为公差,若成等比数列,且,则数列的前项和为()A. B.C. D.11.已知函数,若存在唯一的零点,且,则的取值范围是A. B.C. D.12.过椭圆的左焦点作弦,则最短弦的长为()A. B.2C. D.4二、填空题:本题共4小题,每小题5分,共20分。13.设双曲线的焦点为,点为上一点,,则为_____.14.过点且与直线垂直的直线方程为______15.已知等差数列的公差为1,且是和的等比中项,则前10项的和为___________.16.已知函数,则曲线在点处的切线方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知三条直线:,:,:(是常数),.(1)若,,相交于一点,求的值;(2)若,,不能围成一个三角形,求的值:(3)若,,能围成一个直角三角形,求的值.18.(12分)曲线与曲线在第一象限的交点为.曲线是()和()组成的封闭图形.曲线与轴的左交点为、右交点为.(1)设曲线与曲线具有相同的一个焦点,求线段的方程;(2)在(1)的条件下,曲线上存在多少个点,使得,请说明理由.(3)设过原点的直线与以为圆心的圆相切,其中圆的半径小于1,切点为.直线与曲线在第一象限的两个交点为..当对任意直线恒成立,求的值.19.(12分)已知一张纸上画有半径为4圆O,在圆O内有一个定点A,且,折叠纸片,使圆上某一点刚好与A点重合,这样的每一种折法,都留下一条直线折痕,当取遍圆上所有点时,所有折痕与的交点形成的曲线记为C.(1)求曲线C的焦点在轴上的标准方程;(2)过曲线C的右焦点(左焦点为)的直线l与曲线C交于不同的两点M,N,记的面积为S,试求S的取值范围.20.(12分)已知椭圆C:经过点,且离心率为(1)求椭圆C的方程;(2)是否存在⊙O:,使得⊙O的任意切线l与椭圆交于A,B两点,都有.若存在,求出r的值,并求此时△AOB的面积S的取值范围;若不存在,请说明理由21.(12分)噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了解声音强度D(单位:)与声音能量I(单位:)之间的关系,将测量得到的声音强度D和声音能量I的数据作了初步处理,得到如图所示的散点图:参考数据:其中,,,,,,,,(1)根据散点图判断,与哪一个适宜作为声音强度D关于声音能量I的回归模型?(给出判断即可,不必说明理由)(2)求声音强度D关于声音能量I回归方程(3)假定当声音强度D大于时,会产生噪声污染.城市中某点P处共受到两个声源的影响,这两个声通的声音能量分别是和,且.已知点P处的声音能量等于与之和.请根据(2)中的回归方程,判断点P处是否受到噪声污染,并说明理由参考公式:对于一组数据,其回归直线斜率和截距的最小二乘估计公式分别为:22.(10分)设函数.(1)当k=1时,求函数的单调区间;(2)当时,求函数在上的最小值m和最大值M.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用直线的方向向量求出其斜率,进而求出倾斜角作答.【详解】因直线的方向向量为,则直线l的斜率,直线l的倾斜角,于是得,解得,所以直线l的倾斜角为.故选:B2、C【解析】构造函数利用导数说明函数的单调性,即可判断大小,从而得解;【详解】解:令,,则,所以在上单调递增,所以,即,即,,故①正确;令,,则,所以当时,,当时,,所以在上单调递减,在上单调递增,所以,即恒成立,所以,故②正确;令,,当时,当时,所以在上单调递减,在上单调递增,所以,即,所以,当且仅当时取等号,故③错误;故选:C3、D【解析】建立空间直角坐标系,进而根据空间向量的坐标运算判断A,B,C;对D,算出平面MON的法向量,进而求出向量在该法向量方向上投影的绝对值,即为所求距离.【详解】如图建立空间直角坐标系,则.对A,,则,则A正确;对B,,则,则B正确;对C,,则C正确;对D,设平面MON的法向量为,则,取z=1,得,,所以到平面MON的距离为,则D错误.故选:D.4、D【解析】根据双曲线的性质求解即可.【详解】双曲线的焦点在y轴上,且实半轴长为4,虚半轴长为5,可得a=4,b=5,所以双曲线方程为:=1.故选:D.5、D【解析】由题意以AB为直径的圆M与双曲线E的渐近线有四个不同的交点,则必有,又当圆M经过原点时此时以AB为直径的圆M上与双曲线E的渐近线有三个不同的交点,不满足,从而得出答案.【详解】由题意,由得,双曲线的渐近线方程为所以,由,可知,,,在以AB为直径的圆M上,圆的半径为即以AB为直径的圆M与双曲线E的渐近线有四个不同的交点当圆M与渐近线相切时,圆心到渐近线的距离,则必有,即,则双曲线E的离心率,所以又当圆M经过原点时,,解得E的离心率为,此时以AB为直径圆M与双曲线E的渐近线有三个不同的交点,不满足条件.所以E的离心率的取值范围是.故选:D6、C【解析】利用双曲线的定义、几何性质以及题意对选项逐个分析判断即可【详解】对于①,设内切圆与的切点分别为,则由切线长定理可得,因为,,所以,所以点的坐标为,所以点的横坐标为定值a,所以①正确,对于②,因为,所以,化简得,即,解得,因为,所以,所以②正确,对于③,设的内切圆半径为,由双曲线的定义可得,,因为,,所以,所以,所以③正确,对于④,当轴时,可得,此时,所以,所以④错误,故选:C7、B【解析】确定在以为直径的圆上,,根据均值不等式得到圆上的点到的最大距离为,得到,解得答案.【详解】,故在以为直径的圆上,设中点为,则,圆上的点到的最大距离为,,当时等号成立.直线到原点的距离为,故.故选:B.8、C【解析】根据,然后与,可得,最后简单计算,可得结果.【详解】在等比数列中,由所以,又,所以所以故选:C【点睛】本题考查等比数列的性质,重在计算,当,在等差数列中有,在等比数列中,灵活应用,属基础题.9、C【解析】求出导函数,判断导数的正负,从而得出结论【详解】,时,,递减,时,,递增,而,所以切线斜率可能为正数,也可能为负数,还可以为0,则倾斜角可为锐角,也可为钝角,还可以为,当时,斜率不存在,而存在,则不成立.故选:C10、C【解析】先利用已知条件得到,解出公差,得到通项公式,再代入数列,利用裂项相消法求和即可.【详解】因为成等比数列,,故,即,故,解得或(舍去),故,即,故的前项和为:.故选:C.【点睛】方法点睛:数列求和的方法:(1)倒序相加法:如果一个数列的前项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些像可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列:或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前项和可以两两结合求解,则称之为并项求和,形如类型,可采用两项合并求解.11、C【解析】当时,,函数有两个零点和,不满足题意,舍去;当时,,令,得或.时,;时,;时,,且,此时在必有零点,故不满足题意,舍去;当时,时,;时,;时,,且,要使得存在唯一的零点,且,只需,即,则,选C考点:1、函数的零点;2、利用导数求函数的极值;3、利用导数判断函数的单调性12、A【解析】求出椭圆的通径,即可得到结果【详解】过椭圆的左焦点作弦,则最短弦的长为椭圆的通径:故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】将方程化为双曲线的标准方程,再利用双曲线的定义进行求解.【详解】将化为,所以,,由双曲线的定义,得:,即,所以或(舍)故答案为:.14、【解析】先设出与直线垂直的直线方程,再把代入进行求解.【详解】设与直线垂直的直线为,将代入得:,解得:,故所求直线方程为.故答案为:15、【解析】利用等比中项及等差数列通项公式求出首项,再利用等差数列的前项和公式求出前10项的和.【详解】设等差数列的首项为,由已知条件得,即,,解得,则.故答案为:.16、【解析】先求函数的导数,再利用导数的几何意义求函数在处的切线方程.【详解】,,,所以曲线在点处的切线方程为,即.故答案为:【点睛】本题考查导数的几何意义,重点考查计算能力,属于基础题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或或(3)或【解析】(1)由二条已知直线求交点,代入第三条直线即可;(2)不能围成一个三角形,过二条已知直线的交点,或者与它们平行;(3)由直线互相垂直得,斜率之积为-1.【小问1详解】显然,相交,由得交点,由点代入得所以当,,相交时,.【小问2详解】过定点,因为,,不能围成三角形,所以,或与平行,或与平行,所以,或,或.【小问3详解】显然与不垂直,所以,且或所以的值为或18、(1)或;(2)一共2个,理由见解析;(3)答案见解析.【解析】(1)先求曲线的焦点,再求点的坐标,分焦点为左焦点或右焦点,求线段的方程;(2)分点在双曲线或是椭圆的曲线上,结合条件,说明点的个数;(3)首先设出直线和圆的方程,利用直线与圆相切,以及直线与曲线相交,分别表示,并计算得到的值.【详解】(1)两个曲线相同的焦点,,解得:,即双曲线方程是,椭圆方程是,焦点坐标是,联立两个曲线,得,,即,当焦点是右焦点时,线段的方程当焦点时左焦点时,,,线段的方程(2),假设点在曲线上单调递增∴所以点不可能在曲线上所以点只可能在曲线上,根据得可以得到当左焦点,,同样这样的使得不存在所以这样的点一共2个(3)设直线方程,圆方程为直线与圆相切,所以,,根据得到补充说明:由于直线的曲线有两个交点,受参数的影响,蕴含着如下关系,∵,当,存在,否则不存在这里可以不需讨论,因为题目前假定直线与曲线有两个交点的大前提,当共焦点时存在不存在.【点睛】关键点点睛:本题考查直线与椭圆和双曲线相交的综合应用,本题的关键是曲线由椭圆和双曲线构成,所以研究曲线上的点时,需分两种情况研究问题.19、(1);(2)﹒【解析】(1)根据题意,作出图像,可得,由此可知M的轨迹C为以O、A为焦点的椭圆;(2)分为l斜率存在和不存在时讨论,斜率存在时,直线方程和椭圆方程联立,用韦达定理表示的面积,根据变量范围可求面积的最大值﹒【小问1详解】以OA中点G坐标原点,OA所在直线为x轴建立平面直角坐标系,如图:∴可知,,设折痕与和分别交于M,N两点,则MN垂直平分,∴,又∵,∴,∴M的轨迹是以O,A为焦点,4为长轴的椭圆.∴M的轨迹方程C为;【小问2详解】设,,则的周长为当轴时,l的方程为,,,当l与x轴不垂直时,设,由得,∵>0,∴,,,令,则,,∵,∴,∴.综上可知,S的取值范围是20、(1)(2)存在,,【解析】(1)利用离心率和椭圆所过点列出方程组,求出,求出椭圆方程;(2)假设存在,分切线斜率存在和不存在分类讨论,根据向量数量积为0求出r的值,表达出△AOB的面积,利用基本不等式求出的取值范围,进而求出△AOB面积的取值范围.【小问1详解】因为椭圆C:的离心率,且过点所以解得所以椭圆C的方程为【小问2详解】假设存在⊙O:满足题意,①切线方程l的斜率存在时,设切线方程l:y=kx+m与椭圆方程联立,消去y得,(*)设,,由题意知,(*)有两解所以,即由根与系数的关系可得,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民族共同体活动方案
- 国庆节的活动方案背景
- 国庆节 实践活动方案
- 会计咨询服务行业营销策略方案
- 高领套头衫项目运营指导方案
- 钥匙圈小饰物或短链饰物项目运营指导方案
- 非金属的衣服挂钩项目运营指导方案
- 劳务合同模板制作要点
- 个人职业居间协议
- 2024年房屋交易合同范本
- 2024-2029年中国心理咨询行业发展分析及发展趋势预测报告
- 医疗事故的心得体会(18篇)
- 从偏差行为到卓越一生3.0版
- 现实与理想-西方古典绘画 课件-2023-2024学年高中美术人美版(2019)美术鉴赏
- 认识经济全球化 说课课件-2023-2024学年高中政治统编版选择性必修一当代国际政治与经济
- 2024网站渗透测试报告
- 2023-2024学年七年级上册语文期中考试高频考点13 写作实践解析版
- 九年级上期中考试质量分析
- DB-T29-139-2015天津市房屋修缮工程质量验收标准
- 消防安全知识宣讲会
- 金融服务创新联合体协议书
评论
0/150
提交评论