版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省宁县二中2023-2024学年高二数学第一学期期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的图象大致为()A B.C D.2.第24届冬季奥林匹克运动会,将于2022年2月4日在北京市和张家口市联合举行.北京将成为奥运史上第一个举办过夏季奥林匹克运动会和冬季奥林匹克运动会的城市.根据安排,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图所示,内外两圈的钢骨架是两个“相似椭圆”(离心率相同的两个椭圆我们称为“相似椭圆”).如图,由外层椭圆长轴一端点A和短轴一端点B分别向内层椭圆引切线AC,BD,若两切线斜率之积等于,则椭圆的离心率为()A. B.C. D.3.如图,O是坐标原点,P是双曲线右支上的一点,F是E的右焦点,延长PO,PF分别交E于Q,R两点,已知QF⊥FR,且,则E的离心率为()A. B.C. D.4.已知抛物线,则它的焦点坐标为()A. B.C. D.5.已知F1、F2是双曲线E:(a>0,b>0)的左、右焦点,过F1的直线与双曲线左、右两支分别交于点P、Q.若,M为PQ的中点,且,则双曲线的离心率为()A. B.C. D.6.设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为8,则的焦距的最小值为()A.4 B.8C.16 D.327.已知曲线C的方程为,则下列结论正确的是()A.当时,曲线C为圆B.“”是“曲线C为焦点在x轴上的双曲线”的充分而不必要条件C.“”是“曲线C为焦点在x轴上的椭圆”的必要而不充分条件D.存在实数k使得曲线C为双曲线,其离心率为8.实数m变化时,方程表示的曲线不可以是()A.直线 B.圆C椭圆 D.双曲线9.已知数列满足:,数列的前n项和为,若恒成立,则的取值范围是()A. B.C. D.10.已知双曲线的一个焦点到它的一条渐近线的距离为,则()A.5 B.25C. D.11.的展开式中的系数是()A.1792 B.C.448 D.12.已知是虚数单位,若,则复数z的虚部为()A.3 B.-3iC.-3 D.3i二、填空题:本题共4小题,每小题5分,共20分。13.已知数列满足,,则数列的前n项和______14.如图所示,在直二面角D-AB-E中,四边形ABCD是边长为2的正方形,△AEB是等腰直角三角形,其中,则点D到平面ACE的距离为________15.数列的前项和为,则的通项公式为________.16.将4名志愿者分配到3个不同的北京冬奥场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为________.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆:与直线:.(1)证明:直线过定点,并求出其坐标;(2)当时,直线l与圆C交于A,B两点,求弦的长度.18.(12分)已知数列是等差数列,其前n项和为,,,数列满足(且),.(1)求和的通项公式;(2)求数列的前n项和.19.(12分)如图,在四棱锥中,底面为的中点(1)求证:平面;(2)若,求平面与平面的夹角大小20.(12分)如图,矩形和菱形所在的平面相互垂直,,为的中点.(1)求证:平面;(2)若,求二面角的余弦值.21.(12分)已知椭圆的离心率,左、右焦点分别为、,点在椭圆上,过的直线交椭圆于、两点.(1)求椭圆的标准方程;(2)求的面积的最大值.22.(10分)有时候一些东西吃起来口味越好,对我们的身体越有害.下表给出了不同品牌的一些食品所含热量的百分比记为和一些美食家以百分制给出的对此种食品口味的评价分数记为:食品品牌12345678910所含热量的百分比25342019262019241914百分制口味评价分数88898078757165626052参考数据:,,,参考公式:,(1)已知这些品牌食品的所含热量的百分比与美食家以百分制给出的对此种食品口味的评价分数具有相关关系.试求出回归方程(最后结果精确到);(2)某人只能接受食品所含热量百分比为及以下的食品.现在他想从这些食品中随机选取两种购买,求他所选取的两种食品至少有一种是美食家以百分制给出的对此种食品口味的评价分数为分以上的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用导数求得的单调区间,结合函数值确定正确选项.【详解】由,可得函数的减区间为,增区间为,当时,,可得选项为A故选:A2、C【解析】设内层椭圆的方程为,可得外层椭圆的方程为,设切线的方程为,联立方程组,根据,得到,同理得到,结合题意求得,进而求得离心率.【详解】设内层椭圆方程为,因为内外层的椭圆的离心率相同,可设外层椭圆的方程为,设切线的方程为,联立方程组,整理得,由,整理得,设切线的方程为,同理可得,因为两切线斜率之积等于,可得,可得,所以离心率为.故选:C.3、B【解析】令双曲线E的左焦点为,连线即得,设,借助双曲线定义及直角用a表示出|PF|,,再借助即可得解.【详解】如图,令双曲线E的左焦点为,连接,由对称性可知,点线段中点,则四边形是平行四边形,而QF⊥FR,于是有是矩形,设,则,,,在中,,解得或m=0(舍去),从而有,中,,整理得,,所以双曲线E的离心率为故选:B4、D【解析】将抛物线方程化标准形式后得到焦准距,可得结果.【详解】由得,所以,所以,所以抛物线的焦点坐标为.故选:D.【点睛】关键点点睛:将抛物线方程化为标准形式是解题关键.5、D【解析】由题干条件得到,设出,利用双曲线定义表达出其他边长,得到方程,求出,从而得到,,利用勾股定理求出的关系,求出离心率.【详解】因为M为PQ的中点,且,所以△为等腰三角形,即,因为,设,则,由双曲线定义可知:,所以,则,又,所以,解得:,由勾股定理得:,其中,在三角形中,由勾股定理得:,即,解得:故选:D6、B【解析】因为,可得双曲线的渐近线方程是,与直线联立方程求得,两点坐标,即可求得,根据的面积为,可得值,根据,结合均值不等式,即可求得答案.【详解】双曲线的渐近线方程是直线与双曲线的两条渐近线分别交于,两点不妨设为在第一象限,在第四象限联立,解得故联立,解得故面积为:双曲线其焦距为当且仅当取等号的焦距的最小值:故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.7、C【解析】根据椭圆、双曲线的定义及简单几何性质计算可得;【详解】解:由题意,曲线C的方程为,对于A中,当时,曲线C的方程为,此时曲线C表示椭圆,所以A错误;对于B中,当曲线C的方程为表示焦点在x轴上的双曲线时,则满足,解得,所以“”是“曲线C为焦点在x轴上的双曲线”的必要不充分条件,所以B不正确;对于C中,当曲线C的方程为表示焦点在x轴上的椭圆时,则满足,解得,所以“”是“曲线C为焦点在x轴上的双曲线”的必要不充分条件,所以C正确;对于D中,当曲线C的方程为表示双曲线,且离心率为时,此时双曲线的实半轴长等于虚半轴长,此时,解得,此时方程表示圆,所以不正确.故选:C.8、B【解析】根据的取值分类讨论说明【详解】时方程化为,为直线,时,方程化为,为椭圆,时,方程化为,为双曲线,而,因此曲线不可能是圆故选:B9、D【解析】由于,所以利用裂项相消求和法可求得,然后由可得恒成立,再利用基本不等式求出的最小值即可【详解】,故,故恒成立等价于,即恒成立,化简得到,因为,当且仅当,即时取等号,所以故选:D10、B【解析】由渐近线方程得到,焦点坐标为,渐近线方程为:,利用点到直线距离公式即得解【详解】由题意,双曲线故焦点坐标为,渐近线方程为:焦点到它的一条渐近线的距离为:解得:故选:B11、D【解析】根据二项式展开式的通项公式计算出正确答案.【详解】的展开式中,含的项为.所以的系数是.故选:D12、C【解析】由复数的除法运算可得答案.【详解】由题得,所以复数z的虚部为-3.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求出,利用裂项相消法求和.【详解】因为数列满足,,所以数列为公差d=2的等差数列,所以,所以所以.故答案为:.14、【解析】建立合适空间直角坐标系,分别表示出点的坐标,然后求解出平面的一个法向量,利用公式求解出点到平面的距离.【详解】以AB的中点O为坐标原点,分别以OE,OB所在的直线为x轴、y轴,过垂直于平面的方向为轴,建立如下图所示的空间直角坐标系,则,,设平面ACE的法向量,则,即,令,∴故点D到平面ACE的距离.故答案:.15、【解析】讨论和两种情况,进而利用求得答案.【详解】由题意,时,,时,,则,于是,故答案为:16、36【解析】先将4人分成2、1、1三组,再安排给3个不同的场馆,由分步乘法计数原理可得.【详解】将4人分到3个不同的体育场馆,要求每个场馆至少分配1人,则必须且只能有1个场馆分得2人,其余的2个场馆各1人,可先将4人分为2、1、1的三组,有种分组方法,再将分好的3组对应3个场馆,有种方法,则共有种分配方案.故答案为:36三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,(2)【解析】(1)将直线方程化为,解方程得出定点;(2)求出圆心到直线的距离,再由几何法得出弦长.【小问1详解】证明:因为直线,所以.令,解得,所以不论取何值,直线必过定点【小问2详解】当时,直线为,圆心圆心到直线的距离,则18、(1),;(2).【解析】(1)根据,列方程组即可求解数列的通项公式,根据可求数列的通项公式;(2)化简,利用裂项相消法求该数列前n项和.【小问1详解】设等差数列公差为d,∵,∴,∵公差,∴.由得,即,∴数列是首项为,公比为2的等比数列,∴;【小问2详解】∵,∴,.19、(1)证明见解析(2)【解析】(1)取中点,连结,证得,利用线面平行的判定定理,即可求解;(2)以为原点,以方面为轴,以方向为轴,以方向为轴,建立坐标系,利用平面和平面的法向量的夹角公式,即可求解【小问1详解】取中点,连结,由,,则,又由平面,平面,所以平面.【小问2详解】以为原点,以方面为轴,以方向为轴,以方向为轴,建立坐标系,可得,,,,,则,,设平面的一个法向量为,则,即,令,则又平面的法向量为;则,所以平面与平面所成的锐二面角为.20、(1)证明见解析;(2).【解析】(1)利用面面垂直和线面垂直的性质定理可证得;由菱形边长和角度的关系可证得;利用线面垂直的判定定理可证得结论;(2)以为坐标原点建立起空间直角坐标系,利用空间向量法可求得二面角的余弦值.详解】(1)平面平面,平面平面,且平面,平面,平面,,四边形为菱形且为中点,,又,,又,,平面,,平面.(2)以为坐标原点可建立如下图所示的空间直角坐标系,设,则,,,,,,则,,,设平面的法向量,则,令,则,,,设平面的法向量,则,令,则,,,,二面角为钝二面角,二面角的余弦值为.【点睛】本题考查立体几何中线面垂直关系的证明、空间向量法求解二面角的问题;涉及到面面垂直的性质定理、线面垂直的判定与性质定理的应用,属于常考题型.21、(1)(2)【解析】(1)利用椭圆的离心率、点在椭圆上以及得到的方程组,进而得到椭圆的标准方程;(2)设出直线方程,联立直线和椭圆方程,得到关于的一元二次方程,利用根与系数的关系和三角形的面积公式得到三角形的面积,再利用基本不等式求其最值.【小问1详解】解:由题可得,且,将点代入椭圆方程,得,解得,,即椭圆方程为;【小问2详解】解:由(1)可得,,设:,联立,消去,得,设,,则,则所以,当且仅当,即时取等号,故的面积的最大值为.22、(1)(2)【解析】(1)首先求出、、,即可求出,从而求出回归直线方程;(2)由表可知某人只能接受的食品
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 船舶工程合同航海性能
- 2024版货车车租赁合同书
- 社交媒体合作框架协议书
- 酒店医务室招聘协议样本
- 消防维修脚手架安装协议
- 科技研发企业购房合同样本
- 城市绿化景观新建植树合同
- 教育机构装修施工协议模板
- 广场科技展租赁协议
- 农药销售律师聘请合同模板
- COPD(慢性阻塞性肺病)诊治指南(2023年中文版)
- 气相色谱仪作业指导书
- 中医院医院等级复评实施方案
- 跨高速桥梁施工保通专项方案
- 铁路货车主要轮对型式和基本尺寸
- 译林版南京学校四年级英语上册第一单元第1课时storytime导学单
- 理正深基坑之钢板桩受力计算
- 员工入职培训
- 铺种草皮施工方案(推荐文档)
- 10KV高压环网柜(交接)试验
- 综合单价的确定
评论
0/150
提交评论