版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省安平中学2024届高二上数学期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线的焦点到渐近线的距离为()A. B.C. D.2.已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹方程()A.x2-=1(x≤-1) B.x2-=1C.x2-=1(x1) D.-x2=13.已知向量,且,则的值为()A.4 B.2C.3 D.14.已知椭圆的右焦点为,则正数的值是()A.3 B.4C.9 D.215.在区间内随机地取出两个数,则两数之和小于的概率是()A. B.C. D.6.已知正方形ABCD的边长为2,E,F分别为CD,CB的中点,分别沿AE,AF将三角形ADE,ABF折起,使得点B,D恰好重合,记为点P,则AC与平面PCE所成角等于()A. B.C. D.7.已知向量,,且,则实数等于()A1 B.2C. D.8.已知椭圆上一点到左焦点的距离为,是的中点,则()A.1 B.2C.3 D.49.已知函数的导函数的图像如图所示,则下列判断正确的是()A.在区间上,函数增函数 B.在区间上,函数是减函数C.为函数的极小值点 D.2为函数的极大值点10.将的展开式按x的降幂排列,第二项不大于第三项,若,且,则实数x的取值范围是()A. B.C. D.11.在某次赛车中,名参赛选手的成绩(单位:)全部介于到之间(包括和),将比赛成绩分为五组:第一组,第二组,···,第五组,其频率分布直方图如图所示.若成绩在内的选手可获奖,则这名选手中获奖的人数为A. B.C. D.12.设,,,则下列不等式中一定成立的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若抛物线经过点,则__________.14.已知点,为抛物线:上不同于原点的两点,且,则的面积的最小值为__________.15.已知圆,直线与圆C交于A,B两点,且,则______16.过椭圆的右焦点作两条相互垂直的直线m,n,直线m与椭圆交于A,B两点,直线n与椭圆交于C,D两点,若.则下列方程①;②;③;④.其中可以作为直线AB的方程的是______(写出所有正确答案的序号)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)椭圆的左右焦点分别为,,焦距为,为原点.椭圆上任意一点到,距离之和为.(1)求椭圆的标准方程;(2)过点的斜率为2的直线交椭圆于、两点,求的面积.18.(12分)已知函数,,其中.(1)试讨论函数的单调性;(2)若,证明:.19.(12分)已知是奇函数.(1)求的值;(2)若,求的值20.(12分)已知函数,.(1)当时,求曲线在点处的切线方程;(2)若在区间上有唯一的零点.(ⅰ)求的取值范围;(ⅱ)证明:.21.(12分)已知p:方程所表示的曲线为焦点在x轴上的椭圆;q:当时,函数恒成立.(1)若p为真,求实数t的取值范围;(2)若为假命题,且为真命题,求实数t的取值范围22.(10分)在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若与相交于A、两点,设,求.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意,由双曲线的标准方程可得双曲线的焦点坐标以及渐近线方程,由点到直线的距离公式计算可得答案.【详解】解:根据题意,双曲线的方程为,其焦点坐标为,其渐近线方程为,即,则其焦点到渐近线的距离;故选D.【点睛】本题考查双曲线的几何性质,关键是求出双曲线的渐近线与焦点坐标.2、A【解析】根据双曲线定义求解【详解】,则根据双曲线定义知的轨迹为的左半支故选:A第II卷(非选择题3、A【解析】由题意可得,利用空间向量数量积的坐标表示列方程,解方程即可求解.【详解】因为,所以,因为向量,,所以,解得,所以的值为,故选:A.4、A【解析】由直接可得.【详解】由题知,所以,因为,所以.故选:A5、C【解析】利用几何概型的面积型,确定两数之和小于的区域,进而根据面积比求概率.【详解】由题意知:若两个数分别为,则,如上图示,阴影部分即为,∴两数之和小于的概率.故选:C6、A【解析】如图,以PE,PF,PA分别为x,y,z轴建立空间直角坐标系,利用空间向量求解【详解】由题意得,因为正方形ABCD的边长为2,E,F分别为CD,CB的中点,所以,所以,所以所以PA,PE,PF三线互相垂直,故以PE,PF,PA分别为x,y,z轴建立空间直角坐标系,则,,,,设,则由,,,得,解得,则设平面的法向量为,则,令,则,因为,所以AC与平面PCE所成角的正弦值,因为AC与平面PCE所成角为锐角,所以AC与平面PCE所成角为,故选:A7、C【解析】利用空间向量垂直的坐标表示计算即可得解【详解】因向量,,且,则,解得,所以实数等于.故选:C8、A【解析】由椭圆的定义得,进而根据中位线定理得.【详解】解:由椭圆方程得,即,因为由椭圆的定义得,,所以,因为是的中点,是的中点,所以.故选:A9、D【解析】根据导函数与原函数的关系可求解.【详解】对于A,在区间,,故A不正确;对于B,在区间,,故B不正确;对于C、D,由图可知在区间上单调递增,在区间上单调递减,且,所以为函数的极大值点,故C不正确,D正确.故选:D10、A【解析】按照二项展开式展开表示出第二项第三项,解不等式即可.【详解】由二项展开式,第二项为:,第三项为:,依题意,两边约去得到,即,由知,则,同时约去得到.故选:A.11、A【解析】先根据频率分布直方图确定成绩在内的频率,进而可求出结果.【详解】由题意可得:成绩在内的频率为,又本次赛车中,共名参赛选手,所以,这名选手中获奖的人数为.故选A【点睛】本题主要考查频率分布直方图,会根据频率分布直方图求频率即可,属于常考题型.12、B【解析】利用特殊值法可判断ACD的正误,根据不等式的性质,可判断B的正误.【详解】对于A中,令,,,,满足,,但,故A错误;对于B中,因为,所以由不等式的可加性,可得,所以,故B正确;对于C中,令,,,,满足,,但,故C错误;对于D中,令,,,,满足,,但,故D错误故选:B二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】将点代入抛物线方程即可得出答案.【详解】解:因为抛物线经过点,所以,即.故答案为:2.14、【解析】设,,利用可得即可求得,利用两点间距离公式求出、,面积,利用基本不等式即可求最值.【详解】设,,由可得,解得:,,,,,所以,当且仅当时等号成立,所以的面积的最小值为,故答案为:.【点睛】关键点点睛:本题解题的关键点是设,坐标,采用设而不求的方法,将转化为,求出参数之间的关系,再利用基本不等式求的最值.15、-2【解析】将圆的一般方程化为标准方程,结合垂径定理和勾股定理表示出圆心到弦的距离,再由点到直线的距离公式表示出圆心到弦的距离,解方程即可求得的值.【详解】解:将圆的方程化为标准方程可得,圆心为,半径圆C与直线相交于、两点,且,由垂径定理和勾股定理得圆心到直线的距离为,由点到直线距离公式得,所以,解得,故答案为:.16、①②【解析】①②结合椭圆方程得到与椭圆参数的关系,即可判断;③④联立直线与椭圆方程,利用弦长公式求,即可判断.【详解】由题设,且右焦点为,①时直线,故,则符合题设;②时,同①知:符合题设;③时直线,联立直线AB与椭圆方程并整理得:,则,同理可得,则,不合题设;④时,同③分析知:,不合题设;故答案为:①②.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据题意和椭圆的定义可知a,c,再根据,即可求出b,由此即可求出椭圆的方程;(2)求出直线方程,将其与椭圆方程联立,根据弦长公式求出的长度,再根据点到直线的距离公式求出点O到直线AB的距离,再根据面积公式即可求出结果.【小问1详解】由题意可得,,∴,,,所以椭圆的标准方程为.【小问2详解】直线l的方程为,代入椭圆方程得,设,,则,,,∴,又∵点O到直线AB的距离,∴,即△OAB的面积为.18、(1)答案见解析(2)证明见解析【解析】(1)先求出函数的定义域,然后求导,再根据导数的正负求出函数的单调区间,(2)要证,只要证,由于时,,当时,令,再利用导数求出其最小值大于零即可【小问1详解】的定义域为当时,,在上单调递增;当时,令,解得;令,解得;综上所述:当时,在上单调递增,无减区间;当时,在上单调递减,在上单调递增;【小问2详解】,,即证:,即证:当时,,,当时,令,则在上单调递增在上单调递增综上所述:,即19、(1);(2)4【解析】(1)根据奇函数的定义,代入化简得,进而可得的值;(2)设,可得,根据奇函数的性质得,进而可得结果.【详解】解:(1)因为是奇函数,所以,即,整理得,又,所以(2)设,因为,所以因为是奇函数,所以所以【点睛】本题主要考查了已知函数的奇偶性求参数的值,根据函数的奇偶性求函数的值,属于中档题.20、(1);(2)(ⅰ);(ⅱ)证明见解析.【解析】(1)求出,,利用导数的几何意义即可求得切线方程;(2)(ⅰ)根据题意对参数分类讨论,当时,等价转化,且构造函数,利用零点存在定理,即可求得参数的取值范围;(ⅱ)根据(ⅰ)中所求得到与的等量关系,求得并构造函数,利用导数研究其单调性和最值,则问题得证.【小问1详解】当时,,则,故,,则曲线在点处的切线方程为.【小问2详解】(ⅰ)因为,故可得,因为,则当时,,则,无零点,不满足题意;当时,若在有一个零点,即在有一个零点,也即在有一个零点,又,则单调递增,则只需,解得.综上所述,若在区间上有唯一的零点,则;(ⅱ)由(ⅰ)可知,若在区间上有唯一的零点,则,也即,则,令,则,又在都是单调增函数,故是单调增函数,又,故,则在单调递增,则,故,即证.【点睛】本题考查导数的几何意义,利用导数研究函数的零点以及最值;处理问题的关键是合理转化函数零点问题,以及充分利用零点存在定理,熟练掌握构造函数法,属综合困难题.21、(1)(2)【解析】(1)由给定条件结合椭圆标准方程的特征列不等式求解作答.(2)求命题q真时的t值范围,再借助“或”联结的命题为真命题求解作答.【小问1详解】因方程所表示的曲线为焦点在x轴上的椭圆,则有,解得,所以实数t的取值范围是.【小问2详解】,则有,当且仅当,即时取“=”,即,因当时,函数恒成立,则,解得,命题q为真命题有,因为假命题,且为真命题,则与一真一假,当p真q假时,,当p假q真时,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论