版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
LifeScienceNecessities:FlexibilityandDataGathering–BreadthandEasilyloadcommonfileExcel,CSVandotherImage(jpeg,tiff,gif,bmp,png,AccesstomanyspecializedSequencedata(fasta,embl,genbank,etc.)Microarray(Affymetrix,GenePix,GEO,BLASTReports,MassSpec,PhylogeneticTrees,CompleteintegrationtoSQLandODBCDirectAccesstoExternalVideoCameras,MedicalEquipment,Example:SeamlessDatabaseVisualQueryAccessdatawithoutknowingScrollthroughtablesandCustomizeyourBuilt-invisualizationPlottingandCreatingHMTLHandlingdateReuseSQLstatementsinyourownProblemswithinsufficientlyautomatedcomputationalLackofInadequatemetricsforquantification,Slow,Humanerror,transcriptionLimitedscientificPerformaspectrumofanalysesincludingnonlinearmixed-effects(非线性混合效应),sequence(测序),microarray(微阵列),phylogenetictree(系统进化树),massspectrometry(质谱分析),andgeneontology(基因本体论)Importdatafrommultiplesources,suchasdatabases,fileformats,orShareresultswithautomaticallygeneratedHTMLreports,datavisualizations,orstand-alonetoolsParallelizedataanalysistodecreasecomputationAutomateanalysestoimplementbatchprocessingofcontiguousExploreProductsforComputationalDataAcquisitionTheadvantageofautomatedcomputationalObtainobjectiveReducecostsandDecreaseprocessingandanalysisAlleviatehumanerrorsandtranscriptionConsiderthisimagefromNationalCancerGoal:ToquantifytheamountofInitialmethod:Post-docsitsbehindmicroscopeandcountsthenumberofmetastaticspotsnottootimeconsumingforoneimage
NotaveryconvincingGoal:ToquantifytheamountoftissuemetastasisforInitialmethod:Post-docsitsbehindmicroscopeandcountsthenumberofmetastaticspotsHowautomatedcomputingObtainobjectiveReducecostsandDecreaseprocessingandanalysisAlleviatehumanerrorsandtranscriptionTectorialMembraneGoal:DetermineelasticityofTectorialMembraneAtomicForceMicroscopeInitialmethodtoAtomicForceMicroscopeAnalysisof1AFMfiletook30-40Arealisticgoalwastoanalyze10filesinoneWithautomatedcomputing,theobtainableamountofdataincreasedAnalysisof1AFMnowtook3-4Nowwecouldanalyze100soffilesinaportionofaAnalysisofFluoresceinGoalDeterminemeancirculationtime平均循环时间(MCT)andretinalbloodflow视网膜血流Intensity, Intensity,Fit ensity-vs-TimetolognormalparameterizedbyIo,Ip,tp,b(shapeMCTMCT=tm,vein-RBF=2art+ AnalysisofFluorescein =t-t)exp3 Manuallytrackvessels,collectingtime-intensitydata(40minutesinadarkroom!)Manuallyidentifyarteries,TransferintensityinformationtostatisticspackagetocalculatefitparametersDetermineManuallymeasurevesselCalculateLogresultsinlabPerfectapplicationforneuralnetworksAutomatedtheanalysiswithMATLABandCodecurrentlyusedinlabsLet’stakeaGoal:Determinemeancirculationtime(MCT)andretinalbloodflowPreviousTimeVeryAutomatedcomputingallowedusObtainobjectiveDecreaseprocessingandanalysisReducecostsandTypicalAccessAnalyzeShareSimBiology,Systems
SimBiology®providesanappandprogrammatictoolstomodel,simulate,andanalyzedynamicsystems,focusingonpharmacokinetic/pharmacodynamic(PK/PD)andsystemsbiologyapplications.Itprovidesablockdiagrameditorforbuildingmodels,oryoucancreatemodelsprogrammaticallyusingtheMATLAB®language.SimBiologyincludesalibraryofcommonPKmodels,whichyoucancustomizeandintegratewithmechanisticsystemsbiologymodels.Avarietyofmodelexplorationtechniquesletyouidentifyoptimaldosingschedulesandputativedrugtargetsincellularpathways.SimBiologyusesordinarydifferentialequations(ODEs)andstochasticsolverstosimulatethetimecourseprofileofdrugexposure,drugefficacy,andenzymeandmetabolitelevels.Youcaninvestigatesystemdynamicsandguideexperimentationusingparametersweepsandsensitivityanalysis.YoucanalsousesinglesubjectorpopulationdatatoestimatemodelSimBiologyUserinterfacetofacilitatebuilding,simulating,andanalyzingdynamicImport,build,andexportmechanisticorPKPDrepresentationofsystemSimulateresponsestobiologicalvariabilityordifferentdosingconditions,scanparameterranges,calculatesensitivitiesLeast-squaresestimationofgroupedorpooleddata,andmaximumlikelihoodestimationofpopulationparametersDeploySimBiologymodelsforstandaloneQuestionstoWhatisthevalueofmodelingQuestionstoWhyCreateQuantitativeBiochemicalReactionBiochemicalpathwaysstartoutsimpleandquicklygrowinTestingpathwaysviaexperimentisexpensiveinbothtimeandmoney.QuantitativemodelingnarrowstherangeofOncecreatedandvalidatedwithexperimentsthequantitativemodelcanbeusedasanin-silicosandboxtotestnewideasdramaticallyfasterthanthroughexperimentation.ChallengeswithincomputingbiochemicalIntegratingknowledgefromexperimentaldata,intuition,literature,andothermodelsisdifficultModelersandscientistshavedifficultycommunicatingknowledgeandsharingworkThemathematicsforsolvingthesemodelsisevolvingfasterthanthetoolsManydifferenttoolsareneededtocompleteentireworkflowModelcreatedbyEnterinchemicalEstimateparametersusingexperimentaldataIsolaterelevantparametersusingsensitivityanalysis>>IntroductiontoProvidesoneenvironmentforbothgraphicalandprogrammaticIntroductiontoProvidesonetoolformodeling,simulating,andanalyzingpathwaysUsedbymodelersorprogrammerstogaininsightintotheirpathwayandtocommunicatetheirpathwaywithKeyBuildingaTabularViaMATLABImportSBMLRunningaAnalyzingaSensitivityLet’sLet’sbuildasimpleAsimplegeneregulationmodelwithtranslation,andnegativefeedbacktosuppressLet’sbuildasimpleTranscription:theprocessthroughwhichaDNAsequenceisenzymaticallycopiedbyanRNApolymerase聚合酶toproduceacomplementaryRNA;thetransferofgeneticinformationfromDNAintoRNA.Translation:thesecondpartofproteinbiosynthesis生物合成,inwhichanmRNAsequenceisconvertedtoachainofaminoacidstoformaprotein.
>>>>Pharmacokinetics.Thestudyofwhatthebodydoestoadrugafteradministration.是指抗生ThestudyofAbsorptionDistributionMetabolismandExcretion分泌(ADME)ofdrugsinthebodyPharmacodynamics.Thestudyofwhatthedrugdoestothebody.是指抗生素在感染部位达到相应的浓Thestudyofthebiochemicalandphysiological生理学effectsofdrugsmechanismsofdrugactionrelationshipbetweendrugconcentrationandeffectPROBLEM:Theeffectofadrugiscalculatedfromtheamountinthebiophase,which,unfortunately,cannotbedirectlymeasured.PKknowledgeisneededtomodeltransferofdrugfrombloodtoeffectsiteChallengesinPK/PDManytoolsChallengesinPK/PDNONMEM,Basic,Fortan,C:Buildingandmaintainingmodelscanbedifficult.OrganSpecificornicheSimulationtoolsaretoocomplexand/orblackboxOrganmodelsnoteditable,methodsarenotFlexibilityisWorkflowismanual,notModelling,simulation,statistics,andvisualizationallrequiredifferenttoolsManualintegrationistimePKExampleTransdermalInputNicotinepatchisappliedtotheskinfor16Overlappingzero-orderinputDrugconcentrationmonitoredfor24Singlecompartment
Rapiddecreaseinconcentrationwheninfusionratesdrop==
Totaldose–Doseslow
dC/dt=(FfastdC/dt=(Ffast+Fslow–
NoPKExample…PKExample…1234568FastinfusionrunsfortimeSlowinfusionrunsfortimeInitialnicotineconcentration=2V=140V=140=78 =6=17
GenericPBPKmodelofFromPoulinandThiel;JPharmaceuticalSciences.91:5,MayFromPoulinandThiel;JPharmaceuticalSciences.91:5,MayPKExample–Let’sPKExample–Let’sshowhowwemightimplementthisin>>>>Read,analyze,andvisualizegenomicandproteomicBioinformaticsToolbox™providesalgorithmsandappsforNextGenerationSequencing(NGS),microarrayanalysis,massspectrometry,andgeneontology.Usingtoolboxfunctions,youcanreadgenomicandproteomicdatafromstandardfileformatssuchasSAM,FASTA,CEL,andCDF,aswellasfromonlinedatabasessuchastheNCBIGeneExpressionOmnibusandGenBank®.Youcanexploreandvisualizethisdatawithsequencebrowsers,spatialheatmaps,andclustergrams.Thetoolboxalsoprovidesstatisticaltechniquesfordetectingpeaks,imputingvaluesformissingdata,andselectingBioinformaticsToolbox--KeyNextGenerationSequencinganalysisandSequenceanalysisandvisualization,includingpairwiseandmultiplesequencealignmentandpeakdetectionMicroarraydataanalysis,includingreading,filtering,normalizing,andMassspectrometryanalysis质谱分析includingclassification,andmarkerPhylogenetictreeGraphtheoryfunctions,includinginteractionmaps,hierarchyplots,andpathwaysDataimportfromgenomic,proteomic,andgeneexpressionfiles,includingSAM,FASTA,CEL,andCDF,andfromdatabasessuchasNCBIandGenBankThemicroarraydataforthisexampleisDeRisi,J.L.,Iyer,V.R.,andBrown,P.O.(Oct24,1997).Exploringthemetabolicandgeneticcontrolofgeneexpressiononagenomicscale.Science,278(5338),680–686.PMID:9381177.TheauthorsusedDNAmicroarraystostudytemporalgeneexpressionofalmostallgenesinSaccharomycescerevisiaeduringthemetabolicshiftfromfermentationtorespiration.Expressionlevelsweremeasuredatseventimepointsduringthediauxicshift.ThefulldatasetcanbedownloadedfromtheGeneExpressionOmnibusWebsiteat:1、LoaddataintotheMATLABenvironment.loadyeastdata.mat2、GetthesizeofthedatabyAns=Accesstheentriesusingcellarray%Thisdisplaysthe15throwofthevariableyeastvalues,whichcontainsexpressionlevelsfortheopenreadingframe(ORF)YAL054C.ans=4、UsethefunctionwebtoaccessinformationaboutthisORFintheSaccharomycesGenomeDatabase(SGD).url=5、AsimpleplotcanbeusedtoshowtheexpressionprofileforthisORF(openreadingframe).xlabel('Time(Hours)');6、Plottheactualvalues.plot(times,2.^yeastvalues(15,:))xlabel('Time(Hours)');ylabel('RelativeExpressionLevel');TheMATLABsoftwareplotsthefigure.ThegeneassociatedwiththisORF,appearstobestronglyup-regulatedduringthediauxicshift.7、Compareothergenesbyplottingmultiplelinesonthesamefigure.holdxlabel('Time(Hours)');ylabel('RelativeExpressionLevel');title('ProfileExpressionLevels');TheMATLABsoftwareplotstheThisprocedureillustrateshowtofilterthedatabyremovinggenesthatarenotexpressedordonotchange.Thedatasetisquitelargeandalotoftheinformationcorrespondstogenesthatdonotshowanyinterestingchangesduringtheexperiment.Tomakeiteasiertofindtheinterestinggenes,reducethesizeofthedatasetbyremovinggeneswithexpressionprofilesthatdonotshowanythingofinterest.Thereare6400expressionprofiles.Youcanuseanumberoftechniquestoreducethenumberofexpressionprofilestosomesubsetthatcontainsthemostsignificantgenes. M‘emptySpots=strcmp('EMPTY',genes);yeastvalues(emptySpots,:)=[];genes(emptySpots)=[];2、Usetheisnanfunctiontoidentifythegeneswithmissingdataandthenuseindexingcommandstoremovethegenes.nanIndices=any(isnan(yeastvalues),2);yeastvalues(nanIndices,:)=[];genes(nanIndices)=[];ans3、UsethefunctiongenevarfiltertofilteroutgeneswithsmallvarianceovertimeThefunctionreturnsalogicalarrayofthesamesizeasthevariablegeneswithonescorrespondingtorowsofyeastvalueswithvariancegreaterthanthe10thpercentileandzeroscorrespondingtothosebelowthethreshold.mask=%Usethemaskasanindexintothevaluestoremove%filteredyeastvalues=yeastvalues(mask,:);genes=genes(mask);ans4、Thefunctiongenelowvalfilterremovesgenesthathaveverylowabsoluteexpressionvalues.Notethatthegenefilterfunctionscanalsoautomaticallycalculatethefiltereddataandnames.[mask,yeastvalues,genes]=ans5、Usethefunctiongeneentropyfiltertoremovegeneswhoseprofileshavelowentropy:[mask,yeastvalues,genes]=ans H=−ln(1/30)= uniformNowthatyouhaveamanageablelistofgenes,youcanlookforrelationshipsbetweentheprofilesusingsomedifferentclusteringtechniquesfromtheStatisticsandMachineLearningToolbox™1、Forhierarchicalclusteringthefunctionpdistcalculatesthepairwisedistancesbetweenprofiles,andthefunctionlinkagecreatesthehierarchicalclustertree.corrDist=pdist(yeastvalues,'corr');clusterTree=linkage(corrDist,'average');2、ThefunctionclustercalculatestheclustersbasedoneitheracutoffdistanceoramaximumnumberofclustersInthiscasethe'maxclust'optionisusedtoidentify16distinctclusters.clusters=cluster(clusterTree,'maxclust',3、Theprofilesofthegenesintheseclusterscanbeplottedtogetherusingasimpleloopandthefunctionsubplot.forc=1:16plot(times,yeastvalues((clusters==c),:)');axistightsuptitle('HierarchicalClusteringof4、TheStatisticsandMachineLearningToolboxsoftwarealsohasaK-meansclusteringfunction.Again,16clustersarefound,butbecausethealgorithmisdifferentthesearenotnecessarilythesameclustersasthosefoundbyhierarchicalclustering.forc=
TheMATLABsoftwareiterations,totalsumofdistances=iterations,totalsumofdistances=8.6267426iterations,totalsumofdistances=8.8606622iterations,totalsumofdistances=9.7767626iterations,totalsumofdistances=9.010354、TheStatisticsandMachineLearningToolboxsoftwarealsohasaK-meansclusteringfunction.Again,16clustersarefound,butbecausethealgorithmisdifferentthesearenotnecessarilythesameclustersasthosefoundbyhierarchicalclustering.forc=5、Insteadofplottingalloftheprofiles,youcanplotjusttheforc=1:16axistightaxisoff %turnofftheaxissuptitle('K-MeansClusteringofClustering6、YoucanusethefunctionclustergramtocreateaheatmapanddendrogramfromtheoutputofthehierarchicalClusteringPrincipal-componentanalysis(PCA)isausefultechniqueyoucanusetoreducethedimensionalityoflargedatasets,suchasthosefrommicroarrayanalysis.YoucanalsousePCAtofindsignalsinnoisydata.1、UsethepcafunctionintheStatisticsandMachineLearningToolboxsoftwaretocalculatetheprincipalcomponentsofadataset.[pc,zscores,pcvars]=pca(yeastvalues)
TheMATLABsoftwarepcColumns1through2、Youcanusethefunctioncumsumtoseethecumulativesumofthevariances.cumsum(pcvars./sum(pcvars)*Thisshowsthatalmost90%ofthevarianceisaccountedforbythefirsttwoprincipal
TheMATLABsoftwareans3、Ascatterplotofthescoresofthefirsttwoprincipalcomponentsshowsthattherearetwodistinctregions.Thisisnotunexpected,becausethefilteringprocessremovedmanyofthegeneswithlowvarianceorlowinformation.Thesegeneswouldhaveappearedinthemiddleofthescatterplot.xlabel('FirstPrincipalComponent');ylabel('SecondPrincipalComponent');title('PrincipalComponentScatterPlot');4、ThegnamefunctionfromtheStatisticsandMachineLearningToolboxsoftwarecanbeusedtoidentifygenesonascatterplot.Youcanselectasmanypointsasyoulikeonthescatterplot.5、AnalternativewaytocreateascatterplotiswiththegscatterfunctionfromtheStatisticsandMachineLearningToolboxsoftware.gscattercreatesagroupedscatterplotwherepointsfromeachgrouphaveadifferentcolorormarker.Youcanuseclusterdata,oranyotherclusteringfunction,togroupthepcclusters=clusterdata(zscores(:,1:2),6);xlabel('FirstPrincipalComponent');ylabel('SecondPrincipalComponent');title('PrincipalComponentScatterPlotwithColoredgname(genes)%Pressenterwhenyoufinishselectinggenes.SupportedDataSupportedDataBLAST
GeneExpressionOtherDataDesignofPrimersforAutomatedDNACalculatepropertiesofFilterprimersbasedonGCcontentorCheckfordimerizationandhairpinRetrieveprimerFindrestrictionenzymethatcutinsideIsolateprimerslackingaGC Pos 50cacatagcccttgccataag11375054.37AppliedBiosystemsDevelopsaCrucialDNASequencingAlgorithminMATLAB®TheTodeveloparobustyetflexiblecalibrationalgorithmtobeincludedinahigh-throughputDNAanalysisinstrumentTheUseMATLABtotestideasandcodeaprototype,andthenusetheMATLAB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 优胜教育个性化辅导课程注册合同
- 《中外美术史》近年考研真题试题库(含答案)
- 《教师职业道德》考前强化练习试题库300题(含答案)
- 让自信成为考试的秘密武器
- 房屋装修半包简单的合同
- 氢能源技术创新与研发趋势
- 装修清包工合同
- 品牌机械设备买卖合同书
- 机械租赁协议合同范本
- 劳动合同补充协议社保协议
- 2025年新能源汽车销售佣金返点合同范本6篇
- 2025-2030年中国配电变压器市场未来发展趋势及前景调研分析报告
- GB/T 45120-2024道路车辆48 V供电电压电气要求及试验
- 2025年上海市嘉定区中考英语一模试卷
- 2025年中核财务有限责任公司招聘笔试参考题库含答案解析
- 华中师大一附中2024-2025学年度上学期高三年级第二次考试数学试题(含解析)
- 健康管理-理论知识复习测试卷含答案
- 成人脑室外引流护理-中华护理学会团体 标准
- JGJ106-建筑基桩检测技术规范
- 高技能公共实训基地建设方案
- 四年级上册竖式计算100题及答案
评论
0/150
提交评论