54883《机械原理(英语)(第2版)》基本课件Chapter 7 Design of Gear Mechanisms_第1页
54883《机械原理(英语)(第2版)》基本课件Chapter 7 Design of Gear Mechanisms_第2页
54883《机械原理(英语)(第2版)》基本课件Chapter 7 Design of Gear Mechanisms_第3页
54883《机械原理(英语)(第2版)》基本课件Chapter 7 Design of Gear Mechanisms_第4页
54883《机械原理(英语)(第2版)》基本课件Chapter 7 Design of Gear Mechanisms_第5页
已阅读5页,还剩53页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chapter7DesignofGearMechanisms1.ParallelShaftGears(1)SpurgearsTheteetharestraightandparalleltothegearaxis.Thisgearisspurgear.Ifthegearshaveexternalteethontheoutersurfaceofthecylinders,theyrotateintheoppositedirection,asshowninFig7-1a.Aninternalgearcanmeshwithaexternalpiniononlyandtheyrotateinthesamedirection,asshowninFig7-1b.Thepinionandrackcombinationconvertsrotarymotionintotranslationalmotionorviceversa,asshowninFig7-1c.

7.1ClassificationofGearMechanismsFig.7-1Spurgears(直齿圆柱齿轮)Fig.7-2Helicalgears(斜齿圆柱齿轮)(2)HelicalgearsLikespurgears,helicalgearscanalsobeusedtoconnectparallelshafts,buttheirteetharenotparalleltotheirshaftsaxes,eachbeinghelicalinshape.Twomeshinggearshavethesamehelixangle,buthaveteethofoppositehands,asshowninFig7-2.Helicalgearcanalsobeclassifiedasexternalcontact,internalcontact,helicalpinionandrack.Fig.7-3Herringbonegears(人字齿轮)(3)HerringbonegearsHerringbonegearsareequivalenttoapairofhelicalgearswithoppositehelixanglesmountedsidebyside,asshowninFig7-3.Theaxialthrustforcesofthetworowsofteethcanceleachother.Sotheycanbeusedathighspeedswithlessnoiseandvibrations.2.SpatialGears(1)IntersectingshaftgearsIftheteethareformedontheconesurface,thisgeariscalledabevelgear.Iftheteetharestraightandcoincidentwiththeirconeelements,thisgeariscalledstraightteethbevelgearshowninFig7-4a.Whentheteethofbevelgearareinclinedatanangletothefaceofbevel,thisgearisknownashelicalbevelgearorspiralbevelgear,asshowninFig7-4b.Thecurvedteethbevelgearhasteeththatarecurved,butwithazerodegreespiralangle,asshowninFig7-4c.

Fig.7-4Bevelgears(锥齿轮)Fig.7-6Wormgears(蜗轮蜗杆)(2)SkewshaftgearsTotransmitmotionbetweentheskewshafts,thespiralgearsorcrossedhelicalgears,wormgearsandHypoidgearsareoftenusedinmachines.Thespiralgearsorcrossedhelicalgearsarelimitedtohighload,andtheirshaftscanbesetatanyangle,asshowninFig7-5.

(3)WormgearsFig7-6showswormgearsinwhichafewteethofthesmallergeararewrappedarounditscircumferenceanumberoftimesandformscrewthreads,andthelargerwheelhasconcaveshapeinitsdiameterdirectionsothattoenvelopetheportionofthesmallergear.Thesmallergeariscalledworm;thelargergeariscalledwormgear.Fig.7-5Crossedhelical

gears(交错轴斜齿轮)1.LawofGearingFig.7-7Fundamentallawofgearing(齿廓啮合的基本定律)7.2FundamentalLawofGearing[Duringmeshingofgears,theprofileofatoothongear1ismeshingatpointKwithanotherprofileonthatgear2toproducearotarymotion.Fig7-7showstwocontactingprofileswithcommonnormaln—n,andthisnormalintersectsthelineofthetwogearcentersO1O2atpointP.

Ifthepitchpointvariesforallphaseofthegearing,theratioisnotaconstant.Thistypeofgeariscallednoncirculargears.Fig7-8showsapairofnoncirculargears.Fig.7-8Noncirculargears(非圆齿轮)2.ConjugateProfilesWhenallthecommonnormallinesforeveryinstantaneouspointofcontactcanpassthroughthepitchpoint,thisisthefundamentallawofgearing;anymeshingprofileswhichsatisfythelawofgearingcanbecalledtheconjugateprofiles.

Inordertomaintainthefundamentallawofgearingtobetrue,thegeartoothprofilesonmeshinggearsmustbeconjugateofoneanother.Thereareinfinitenumbersofpossibleconjugatepairsthatcanbeused,butonlyafewcurveshavebeenpracticallyappliedasgearteeth.Thecycloidprofileisstillusedinwatchesandclocksasatoothform,butmostothergearsusetheinvolutecurvefortheirshape.1.Involute(1)DevelopmentoftheinvoluteFig7-9showsaninvolutegeneratedbyalinerollingonthecircumferenceofacirclewithcenteratO;Whenthelinerolls,thepathgeneratedbythepointKonthelineistheinvolutecurve.

7.3InvolutePropertiesandInvoluteToothProfilesFig.7-9Developmentofthe

involute(渐开线的形成)(2)Involuteproperties1)Thelengthofthegeneratinglineisequaltothearclengthwhichthegeneratinglinerollswithoutslippingonthebasecircle.2)Thegeneratinglineisalwaystangenttothebasecircle,anditisalwaysanormaloftheinvoluteatapointK.3)ThelengthNKisthecurvatureradiusoftheinvoluteatpointK.PointNisthecenterofthecurvatureoftheinvoluteatpointK.

4)Theshapeoftheinvolutedependsupontheradiusofthebasecircle.Thesmallertheradiusofthebasecircleis,thesteepertheinvoluteis.Iftheradiusofthebasecircleisinfinite,theinvolutecurvebecomesastraightline.ThisisshowninFig7-10.Fig.7-10Shapeofinvolutes

andradiusofbasecircles

(渐开线的形状与基圆半径)2.MeshingofInvoluteProfiles(1)TheinstantaneousangularvelocityratioisconstantFig7-11showstwobasecircleswithcentersatO1,O2andradiirb1,rb2.

(2)SeparabilityofthecenterdistanceAnychangeincenterdistancewillhavenoeffectupontheinvoluteprofiles;thegearratiocannotbevaried.

(3)StationaryactionforceThelineofactionincaseofinvoluteteethisalongthecommonnormalatthecontactpoint,andthecommonnormalisthecommontangentofthebasecircles.Fig.7-11Gearingofinvoluteprofiles

(渐开线齿廓的啮合)Fig.7-12Spurgearnomenclatures(渐开线直齿圆柱齿轮名词术语)7.4NomenclaturesofStandardSpurGearandGearSizes1.GearTeethNomenclatures(1)AddendumcircleItisacirclepassingthroughthetopesoftheteeth.Theradiusanddiameteraredenotedasraandda.(2)DedendumcircleItisacirclepassingthroughtherootsoftheteeth.Theradiusanddiameteraredenotedasrfanddf.

(3)ReferencecircleItisadatumcircleingeardesignandmeasurement.Theradiusanddiameteraredenotedasrandd.Notethatthesubscriptwillbeomittedwhenexpressingthedimensionsofagear,suchasr,d,p,etc.(4)BasecircleItisacirclegeneratingtheinvolutecurves.Theradiusanddiameteraredenotedasrbanddb.(5)Tooththickness,spacewidthandcircularpitchThetooththicknessisthethicknessofthetoothmeasuredalongthecircumference,suchassK.Thespacewidthisthespacebetweentheadjacentteethmeasuredalongthecircumference,suchaseK(6)Addendum,dedendumandfulldepthTheaddendumistheradialheightfromthereferencecircletotheaddendumcircle,denotedasha.Thededendumistheradialheightfromthereferencecircletotherootcircle,denotedashf.Thefulldepthistheradialdistancebetweentheaddendumcircleandtherootcircle,denotedashf.(7)NormalpitchItisthecircularpitchmeasuredalongtheirnormal,denotedaspb.Itisequaltothecorrespondingpitchonthebasecircle.(8)FacewidthItisthelengthofthetoothparalleltothegearaxis,denotedasB.2.ParametersofInvoluteGear(1)NumberofteethItisthetotalnumberoftheteeththegearpossesses,anditisalwaysaninteger,denotedasz.

(2)ModuleThelengthofcircumferenceofthereferencecircleisequaltothesumofthenumberofthecircularpitchesonthereferencecircle,sowehave:πd=pz.(3)PressureangleThedefinitionofpressureanglehasbeendemonstratedandherewe

Fig.7-13Gearsizewithsamenumber

ofteethanddifferentmoduleofteeth

(同齿数、不同模数齿轮尺寸)emphasizethattherearedifferentanglesonthedifferentcircumferencesofthegear.

(4)CoefficientofaddendumAstandardvalueoftheaddendumisha=h*am.h*aiscalledthecoefficientofaddendum,usually,h*a=1,fornormalteeth;h*a=0.8,forshorterteeth.

(5)Coefficientofclearance3.GeometricalSizesofStandardSpurGears

Ifagearhasthestandardmoduleandpressureangleonthereferencecircle,standardaddendumanddedendum,alsothetooththicknessisequaltothespacewidthonthereferencecircle,itiscalledthestandardgear.

Tab7-2showstheformulaofcalculatingthesizesofstandardgears.4.ToothThicknessAlonganArbitraryCircle

Ingeardesignandmanufacturing,thetooththicknessonthearbitrarycircle,suchastooththicknessonthegeartop,sometimesmaybenecessary.Fig7-14showsageartooththathasthicknesssKatradicallocationrK.Fig.7-14Tooththicknessalonganarbitrarycircle(任意圆齿厚)5.TerminologyforInternalGears

Aninternalgearhasitsteethcutontheinsideoftherimratherthanontheoutside,andithasconcavetoothprofiles,whilethetoothprofilesoftheexternalgearareconvex.Fig7-15showsatypicalinternalgear,andthefollowingsaredifferentfromtheexternalgear.Fig.7-15Terminologyforinternal

gears(渐开线内齿圆柱齿轮术语)6.TerminologyforaRackArackisaportionofagearhavinganinfinitebasediameter,thusitsreferencecircle,addendumcircle,dedendumcircleareallstraightlines.Theinvoluteprofileoftherackbecomesastraightlineandisperpendiculartothelineofaction,seetheFig7-16.

Fig.7-16Terminologyforarack(齿条术语)Thecharacteristicsofarackareasfollows.1)Theprofilesareallskewlines,andtheyareparallelonthesamesideoftheteeth.Thepressureanglesatdifferentpointontheprofileareallthesameandtheyareequaltothenominalpressureangleof20°.2)Thepitchremainsunchangeableonthereferenceline,addendumline,andsoon.Itsvalueisp=πm;thebasepitchispb=πmcosα.3)Theaddendumanddedendumarethesamewiththeexternalgears.

1.ConditionsofCorrectlyMeshingforInvoluteGears7.5MeshingDriveofStandardSpurGearsFig.7-17Meshingofteeth(齿轮啮合)Gearstransmitmotionbymeansofsuccessivelyengagingteeth,butnotbothgearsaretobemeshedtogethercorrectly.Fig7-17showsapairofmeshinggearsinwhichallthecontactpointsbetweenthetwogearswiththeinvoluteprofilesmustlieonthelineofaction,sothatthepitchpointremainfixed.2.ConditionsofContinuousTransmissionofGears(1)MeshingprocessofapairofgearsInFig-7-18,twogears1and2withrotatingcentersatO1andO2respectivelyareincontactatpointB2andK.

(2)Conditionsofcontinuoustransmissionofgears

Fig7-18showsthatthelaterpairofteethisjustcomingintocontactattheinitialpointB2andthepreviouspairofteethisincontactatthepointK,andthecontactwillnotyethavereachedfinalpointB1.Thus,forashorttimetherewillbetwopairsofteethincontact,thecontinuoustransmissionissatisfied.

Fig.7-18Meshingprocessofteeth(轮齿的啮合过程)1)Contactratioforexternalspurgears.Fig7-19showsapairofmeshinggearshavinginvoluteteeth.ThelengthB2B1canbecalculatedfromthefollowingrelationship.Fig.7-19Contactratioforexternal

gears(外啮合齿轮重合度计算)(3)ValueofcontactratioRearrangingtheaboveequations,weobtain:2)Contactratioforinternalspurgears.ThecontactratioforinternalgearisillustratedinFig7-20.Inthesamemethod,wecanobtainthefollowingformula.Fig.7-20Contactratioforinternalgear

(内啮合齿轮重合度计算)3)Contactratioforapinionandarack.ThecontactratioforapinionandarackisillustratedinFig7-21.WherePB1isasthesameasbeforeandPB2dependsupontherelativepositionofthepinionandtherack.Ifthepinionmesheswitharackwithoutchangingthedistanceofthecenter,thatistosay,thereferencelineoftherackistangenttothereferencecircleofthepinion,thelengthofPB2isasfollows:Fig.7-21Contactratioforapinionand

arack(齿轮齿条啮合的重合度计算)Fig.7-22Natureofteethaction(重合度的意义)Thecontactratiomeanstheaveragenumberofpairsofteethwhichareincontactusuallyisnotaninteger.Iftheratiois12,asshowninFig7-22,itdoesnotmeanthatthereare12pairsofteethincontact.Itmeansthattherearealternatelyonepairandtwopairsofteethincontact,oronepairofteethisalwaysincontact,andtwopairsofgearsareincontact20percentoftimes.FromFig7-22,weknowthattherearetwopairsofteethincontactonthesegmentsofB2K′andKB1,andonthesegmentKK′onlyonepairofteethisincontact.3.RelativeSlideBetweenContactTeeth

FromFig7-22weknowthattheworkingprofileofgear1isfrompointB2toitstoothtop,andtheworkingprofileofgear2isfrompointB1toitstoothtop.Whenthepairofteethcontactsatanarbitrarypoint,suchaspointK′,theslidewilloccurbetweentheteethsurfacesalongtheirtangentdirection.ThisisbecausethatthevelocityofpointK′isnotthesameonthetwogears.4.CenterDistanceofGearsWhentheshaftsofapairofgearsaremountedcorrectly,thefollowingconditionsmustbesatisfied.1)Theradicalclearancebetweentheaddendumcircleofagearandthededendumcircleofthemeshinggearmustbethestandardvalue,thatisc=c*m;seetheFig7-23.

Fig.7-23Normalcenterdistance(无侧隙啮合的径向间隙)2)Thebacklashmustbezerotheoretically;thetooththicknessonthepitchcircleisequaltothespacewidthonthepitchcircleofthemeshinggear.5.PinionandRackExample7-1Twoinvolutegearsinmeshhaveamoduleof2.5mmandapressureangleof20°.Thenumbersofteetharez1=22,z2=33.Thecoefficientofaddendumish*a=1,andc*=0.25.Findthefollowings:1)Sizesofthetwogears;2)Contactratio;3)Ifthecenterdistanceisincreased1mm,findthecontactratio.

Fig.7-24Meshingofapinionandarack(齿轮与齿条啮合)1.GearTeethForming(1)FormingCuttingProbablytheoldestmethodofcuttinggearteethismilling.Aformmillingcuttercorrespondingtotheshapeofthetoothspaceisusedtocutonetoothspaceatatime,afterthegearisindexedthroughonecircularpitchtothenextposition.Therearetwokindsofmillingcutter:oneisthedisccuttershowninFig7-25a;theotheristhefingercuttershowninFig7-25b.

7.6FormingandUndercuttingofGearTeethFig.7-25Formingcutting(仿形加工)(2)GeneratingCuttingIngenerating,atoolhavingashapedifferentfromthetoothprofileismovedrelativetothegearblanktoobtainthepropertoothshape.Themostcommonmethodsofgeneratinggearteethareshapingmethodandhobbingmethod.1)Shapingteeth.Shapingisahighlyfavoredmethodofgeneratingteethofgear.Thecuttingtoolusedintheshapingmethodiseitherarackcutterorapinioncutter.Fig7-26showsshapingteethwithapinioncutter;Fig7-27showsshapingteethwitharackcutter.Fig.7-26Shapingteethwith

apinioncutter(齿轮插刀)Fig.7-27Shapingteethwith

arackcutter(齿条插刀)Fig.7-28Hobbingteeth(滚齿加工)2)Hobbingteeth.Fig7-28illustratesthegeneratingprocesswithahob.Ahobisacylindricalcutterwithoneormorehelicalthreadsquitelikeascrewthreadtap,andhasstraightsideslikearack.Thehobandtheblankarerotatecontinuouslyattheproperangularvelocityratio,andthehobisthenfedslowlyacrossthefaceoftheblankfromoneendofteethtotheother.Allteethhavebeencut.Fig.7-29Undercutting(根切现象)2.Undercutting

Whengearteethareproducedbyageneratingprocess,thetopofcuttingtoolremovestheportionoftheinvoluteprofileneartherootteeth.Thisiscalledundercutting.TheundercuttingweakensthetoothbyremovingmaterialatitsrootshowninFig7-29.Severeundercuttingwillpromoteearlytoothfailure.Itmayalsoreducethelengthofcontactandresultinrougherandnoisiergearaction.Inmachinedesign,theundercuttingmustbeavoidedoreliminatedbythedesigner.Fig.7-30Rackcutterprofile

(齿条插刀的齿廓)(1)CausationofundercuttingThedifferencebetweentherackcutterandtherackisthattheaddendumoftherackcutterisgreaterthanthatoftherack,adistancec*m,asshowninFig7-30.Fig.7-31Undercuttingprocess(根切的形成)Fig7-31illustratesageneratingprocessofastandardgearwiththerackcutter.TheinitialpointofcuttingisatpointB1whichistheintersectionbetweenthelineofactionandtherightedgeoftherackcutter.Whentherackcutterismovedfromposition1toposition2,theinvoluteprofileofthegearwillcompletelybecut.BecausetheaddendumlineoftherackexceedstheextremepointN,thegeneratingprocesscannotbestopped,suchasatposition3,obviously,theinvoluteprofileoftheroottoothontheleftedgeofthecutterwillbecutaway.(2)MinimumnumberofteethtoavoidundercuttingThemethodstoeliminateundercuttingareasfollows:1)Reducetheheightofthetoothofthecutter.ThesegearstobecutarecalledshorttoothgearsFig.7-32Minimumnumberofteethtoavoid

undercutting(避免根切的最少齿数);theyhaveasmallcontactratio.2)Increasethepressureangle.Thisresultsinasmallerbasecircle,sothatmoreofthetoothprofilebecomesinvolute.3)Reducethenumberofteeth.Whenthenumberofteethofageartobecutisreduced,theradiusofbasecircleisreducedtoo,andtheextremepointNislikelytofallontherightofthepointB2wheretheaddendumlineoftherackcutterintersectsthelineofaction.SeetheFig7-32.1.ConceptofNonstandardGears7.7NonstandardSpurGearsIngeneratingastandardgearwitharackcutter,iftheaddendumlineoftherackcutterexcessestheextremepointNwheretheaddendumlineofthecutterintersectsthelineofaction,theundercuttingwilloccur.Tosolveit,therackcuttercanbemovedadistancexmoutwardsuntiltheaddendumlineofthecutterfallsdowntheextremepointN,asshowninFig7-33.Inthiscase,thereferencelineisnolongertangenttothereferencecircleofthegear,thelinewhichistangenttothereferencecircleofthegearisthepitchline,andthetooththicknessandtoothspaceonthepitchlineoftherackisnotequal.Thetooththicknessandtoothspaceonthereferencecircleofthegeartobecutisnotequaltoo.Thisgeariscalledthenonstandardgearormodifiedgear.

2.MinimumCoefficientofOffsetFig.7-33Smallestcoefficientofoffset(最小变位系数)WhentheaddendumlinepassesthroughtheextremepointN,thereisjustnoundercuttingtooccur,asshowninFig7-33.Therefor,wehave:3.ComparisonofStandardGearandNonstandardGear(1)NovariedsizesThebasecircle,referencecircle,circularpitchandbasepitcharenotvaried.Theinvolutecurveisnotchanged;itisusedonthedifferentportionoftheinvolute.

Fig.7-34Tooththicknessofapositivemodifiedgear(正变位齿轮齿厚)(2)VariedsizesThetooththicknessandwidthspacearevaried.Fig7-34showsageneratingprocessofastandardgearandapositivemodifiedgear.Theaddendumanddedendumarevaried.FromtheFig7-35,wecanobservethattheaddendumofapositivemodifiedgearislargerthanthatofthestandardgear,anditsdedendumissmallerthanthatofthestandardgear.Inthesamemethod,wecanfindthedifferencebetweenthestandardgearandnegativemodifiedgearintheiraddendumanddedendum.Fig.7-35Toothprofilesofthestandardgearand

modifiedgears(变位齿轮与标准齿轮的齿廓)4.BriefIntroductionofNonstandardGears

Supposingthatthecoefficientsofoffsetofthetwogearsarex1andx2,thetypesofgeartransmissioncanbeclassifiedasfollows.1)Thecoefficientsofoffsetx1andx2areallzero,thatis:x1+x2=0,andx1=x2=0.Itisapairofstandardgears.2)Thecoefficientsofoffsetx1andx2areequalinmagnitudebutoppositeindirection;thatis:x1+x2=0,andx1=-x2≠0.

3)Thesumofthecoefficientsofoffsetx1andx2isnotequalzero,thatis:x1+x2≠01.ShapeoftheToothofHelicalGearFig.7-36Toothsurfaceofaspurgearandahelicalgear(渐开线圆柱齿轮和斜齿轮轮齿的齿面)7.8ParallelHelicalGears

IfaplaneSrollsonabasecylinder,alineKK′paralleltotheaxisofthecylinderintheplanewillgenerateaninvolutesurfaceofaspurgearonthecylinder,showninFig7-36a.Thus,whenapairofspurgearsisinmesh,contactbetweentheteethisalongthelineparalleltotheaxis.However,ifthelineintheplaneisinclinedanangleβbtotheaxisofthecylinder,itwillgeneratesaninvolutehelicoids,asshowninFig7-36b.2.BasicParametersofaHelicalGear(1)HelixangleFig7-37ashowsahelicalgearwithrighthandthread.Ifweextendthewidthofthehelicalgearuntilitisequaltotheleadofthehelix,thendevelopthebasecylinderandreferencecylinder;thehelixanglescanbedeterminedfromFig3-37b.

Fig.7-37Helixangles(螺旋角)(2)NormalmoduleandtransversemoduleThetransverseplaneofahelicalgearisperpendiculartoitsaxis,anditisacirclewhichisusedtocalculateitsgeometricalsizes.Thenormalplaneisperpendiculartoitstooththread;itisanellipsewhichisusedtoanalyzeforceaction.Therefore,theparametersofthehelicalgearcanbedividedintothatofthetransverseplaneandnormalplane.Fig.7-38Helicalgeartoothrelations(斜齿轮模数关系)Fig.7-39Normalpressureangle

andtransversepressureangle

(法向压力角和端面压力角)

(3)Normalandtransversecoefficientsofaddendum(4)Normalandtransversecoefficientsofclearance(5)NormalandtransversepressureanglesThespurgearsareidentifiedbymeansofonepressureangle;thegeometryofhelicalgearsrequiresthetwopressureangles.Fig7-39showsthetoothprofileofahelicalrackonthetransverseplaneandnormalplane.4.ConditionsofCorrectlyMeshingforHelicalGears

Theconditionsofcorrectlyengagingforapairofhelicalgearsarethatthenormalmoduleandnormalpressureangleofthetwomeshinggearsmustbethesamerespectively,orthetransversemoduleandtransversepressureangleofthetwomeshinggearsmustbethesamerespectively;theirhelixanglesmustbeequalandhaveoppositehelicaldirections.Theyare:mn1=mn2或mt1=mt2

αn1=αn2或αt1=αt2

β1=-β2(“-”代表旋向相反)5.ConditionsofContinuousTransmissionofGearsFig.7-40Contactratioforhelicalgears(斜齿轮传动重合度)Thecontactratioofapairofhelicalgearsisgreaterthanthatofspurgears.ThiscanbeillustratedinFig7-40.Theupperfigureisadevelopedbasecylinderofaspurgearinwhichthetransverseplaneiscoincidentwiththenormalplane;thelineB1B2representsthecontactlengthofthegears.Thecontactratiois:ε=εa+εβTheFig7-whichhasthesamenumberofteethandthetransversemodulewiththeFig7-40aspurgear.6.EquivalentSpurGear

Inordertounderstandthetoothshapeofthenormalplaneofahelicalgear,ahelicalgearcanbecutbytheobliqueplanewhichisperpendiculartothetoothdirection,asshowninFig7-41.Theintersectionoftheobliqueplaneandthereferencecylinderproducesanellipsewhosesemimajoraxisisa,andsemiminoraxisisb.Fig.7-41Equivalentspurgear

(当量齿轮)7.AdvantagesandDisadvantagesofHelicalGears

Helicalgearsaremoreexpensivethanspurgearsbutoffersomeadvantages.Theyoperatequieterthanspurgearsbecauseofsmoothandgradualcontactbetweentheiranglesurfacesastheteethcomeintomesh.Spurgearteethmeshalongtheirentirefacewidthatonce;thesuddenimpactoftoothontoothcausesvibration.Also,forthesamegeardiameterandmodule,ahelicalgearisstrongerduetotheslightlythickertoothforminaplaneperpendiculartothegearaxis.

Theoneofthedisadvantagesofhelicalgearsisthattheyproduceanaxialthrustforcewhichisharmfultothebearings.Therefore,thehelixangleislimitedfrom8°~15°.1.CharacteristicsofWormGearsFig.7-42Wormandwormgear(蜗轮蜗杆)7.9WormandWormGearsWormandwormgearareusedtotransmitmotionbetweentwoshaftswhicharenonparallel,nonintersecting,usuallyatashaftangleof90°,asshowninFig7-42.2.TypesofWormGears

Fig.7-43WormTypes(蜗杆传动类型)3.ParametersandSizesofWormGears(1)ParametersofwormgearsInthemainsectionwhichisperpendiculartotheaxisofthewormgearandcontainstheaxisofthecylindricalworm,theconjugateactionofwormsisthesameasarackand

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论