广西贵港市2023年高二上数学期末监测模拟试题含解析_第1页
广西贵港市2023年高二上数学期末监测模拟试题含解析_第2页
广西贵港市2023年高二上数学期末监测模拟试题含解析_第3页
广西贵港市2023年高二上数学期末监测模拟试题含解析_第4页
广西贵港市2023年高二上数学期末监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西贵港市2023年高二上数学期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.椭圆以坐标轴为对称轴,经过点,且长轴长是短轴长的倍,则椭圆的标准方程为()A. B.C.或 D.或2.我国的刺绣有着悠久的历史,如图,(1)(2)(3)(4)为刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形个数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第个图形包含个小正方形,则的表达式为()A. B.C. D.3.已知四棱锥,平面PAB,平面PAB,底面ABCD是梯形,,,,满足上述条件的四棱锥的顶点P的轨迹是()A.椭圆 B.椭圆的一部分C.圆 D.不完整的圆4.由直线上的点向圆引切线,则切线长的最小值为()A. B.C.4 D.25.【山东省潍坊市二模】已知双曲线的离心率为,其左焦点为,则双曲线的方程为()A. B.C. D.6.中国古代数学名著《算法统宗》中有这样一个问题:“今有俸粮三百零五石,令五等官(正一品、从一品、正二品、从二品、正三品)依品递差十三石分之,问,各若干?”其大意是,现有俸粮石,分给正一品、从一品、正二品、从二品、正三品这位官员,依照品级递减石分这些俸粮,问,每个人各分得多少俸粮?在这个问题中,正三品分得俸粮是()A.石 B.石C.石 D.石7.已知两个向量,,且,则的值为()A.-2 B.2C.10 D.-108.已知是抛物线的焦点,为抛物线上的动点,且的坐标为,则的最小值是A. B.C. D.9.已知数列满足:对任意的均有成立,且,,则该数列的前2022项和()A0 B.1C.3 D.410.已知函数的图象如图所示,则不等式的解集为()A. B.C. D.11.命题,,则为()A., B.,C., D.,12.已知向量,若,则()A. B.5C.4 D.二、填空题:本题共4小题,每小题5分,共20分。13.函数,其导函数为函数,则__________14.数列中,,,,则______15.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为____________.16.已知等差数列的通项公式为,那么它的前项和___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)一个经销鲜花产品的微店,为保障售出的百合花品质,每天从云南鲜花基地空运固定数量的百合花,如有剩余则免费分赠给第二天购花顾客,如果不足,则从本地鲜花供应商处进货.今年四月前10天,微店百合花的售价为每支2元,云南空运来的百合花每支进价1.6元,本地供应商处百合花每支进价1.8元,微店这10天的订单中百合花的需求量(单位:支)依次为:251,255,231,243,263,241,265,255,244,252.(Ⅰ)求今年四月前10天订单中百合花需求量的平均数和众数,并完成频率分布直方图;(Ⅱ)预计四月的后20天,订单中百合花需求量的频率分布与四月前10天相同,百合花进货价格与售价均不变,请根据(Ⅰ)中频率分布直方图判断(同一组中的需求量数据用该组区间的中点值作代表,位于各区间的频率代替位于该区间的概率),微店每天从云南固定空运250支,还是255支百合花,四月后20天百合花销售总利润会更大?18.(12分)如图1,在中,,,,分别是,边上的中点,将沿折起到的位置,使,如图2(1)求点到平面距离;(2)在线段上是否存在一点,使得平面与平面夹角的余弦值为.若存在,求出长;若不存在,请说明理由19.(12分)已知两条直线,.设为实数,分别根据下列条件求的值.(1);(2)直线在轴、轴上截距之和等于.20.(12分)已知等差数列满足(1)求的通项公式;(2)设,求数列的前n项和21.(12分)已知函数(1)讨论函数的单调性;(2)若函数有两个零点,,证明:22.(10分)写出下列命题的逆命题、否命题以及逆否命题:(1)若,则;(2)已知为实数,若,则

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分情况讨论焦点所在位置及椭圆方程.【详解】当椭圆的焦点在轴上时,由题意过点,故,,椭圆方程为,当椭圆焦点在轴上时,,,椭圆方程为,故选:C.2、D【解析】先分别观察给出正方体的个数为:1,,,,总结一般性的规律,将一般性的数列转化为特殊的数列再求解【详解】解:根据前面四个发现规律:,,,,,累加得:,,故选:【点睛】本题主要考查了归纳推理,属于中档题3、D【解析】根据题意,分析得动点满足的条件,结合圆以及椭圆的方程,以及点的限制条件,即可判断轨迹.【详解】因为平面PAB,平面PAB,则//,又面面,故可得;因为,故可得,则,综上所述:动点在垂直的平面中,且满足;为方便研究,不妨建立平面直角坐标系进行说明,在平面中,因为,以中点为坐标原点,以为轴,过且垂直于的直线为轴建立平面直角坐标系,如下所示:因为,故可得,整理得:,故动点的轨迹是一个圆;又当三点共线时,几何体不是空间几何体,故动点的轨迹是一个不完整的圆.故选:.【点睛】本题考察立体几何中动点的轨迹问题,处理的关键是利用立体几何知识,找到动点满足的条件,进而求解轨迹.4、D【解析】切点与圆心的连线垂直于切线,切线长转化为直线上点与圆心连线和半径的关系,利用点到直线的距离公式求出圆心与直线上点距离的最小值,结合勾股定理即可得出结果.【详解】设为直线上任意一点,,切线长的最小值为:,故选:D.5、D【解析】分析:根据题设条件,列出方程,求出,,的值,即可求得双曲线得标准方程详解:∵双曲线的离心率为,其左焦点为∴,∴∵∴∴双曲线的标准方程为故选D.点睛:本题考查双曲线的标准方程,双曲线的简单性质的应用,根据题设条件求出,,的值是解决本题的关键.6、D【解析】令位官员(正一品、从一品、正二品、从二品、正三品)所分得的俸粮数是公差为数列,利用等差数列的前n项和求,进而求出正三品即可.【详解】正一品、从一品、正二品、从二品、正三品这位官员所分得的俸粮数记为数列,由题意,是以为公差的等差数列,且,解得.故正三品分得俸粮数量为(石).故选:D.7、C【解析】根据向量共线可得满足的关系,从而可求它们的值,据此可得正确的选项.【详解】因为,故存在常数,使得,所以,故,所以,故选:C.8、C【解析】由题意可得,抛物线的焦点,准线方程为过点作垂直于准线,为垂足,则由抛物线的定义可得,则,为锐角∴当最小时,最小,则当和抛物线相切时,最小设切点,由的导数为,则的斜率为.∴,则.∴,∴故选C点睛:本题主要考查抛物线的定义和几何性质,与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到焦点的距离与点到准线的距离的转化,这样可利用三角形相似,直角三角形中的锐角三角函数或是平行线段比例关系可求得距离弦长以及相关的最值等问题.9、A【解析】根据可知,数列具有周期性,即可解出【详解】因为,所以,即,所以数列中的项具有周期性,,由,,依次对赋值可得,,一个周期内项的和为零,而,所以数列的前2022项和故选:A10、D【解析】原不等式等价于,根据的图象判断函数的单调性,可得和的解集,再分情况或解不等式即可求解.【详解】由函数的图象可知:在和上单调递增,在上单调递减,所以当时,;当时,;由可得,所以或,即或,解得:或,所以原不等式的解集为:,故选:D.11、B【解析】直接利用特称命题的否定是全称命题写出结果即可.【详解】命题,为特称命题,而特称命题的否定是全称命题,所以命题,,则为:,.故选:B12、B【解析】根据向量垂直列方程,化简求得.【详解】由于,所以.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据解析式,可求得解析式,代入数据,即可得答案.详解】∵,∴,∴.故答案为:.14、##0.5【解析】直接计算得到答案.【详解】∵,,则,.故答案为:.15、160【解析】∵某个年级共有980人,要从中抽取280人,∴抽取比例为,∴此样本中男生人数为,故答案为160.考点:本题考查了分层抽样的应用点评:掌握分层抽样的概念是解决此类问题的关键,属基础题16、【解析】由题意知等差数列的通项公式,即可求出首项,再利用等差数列求和公式即可得到答案.【详解】已知等差数列的通项公式为,..故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析(Ⅱ)四月后20天总利润更大【解析】(Ⅰ)根据众数的定义直接可求出众为255.利用平均数的公式可以求出平均数.根据给定的分组,通过计算完成频率分布直方图(Ⅱ)设订单中百合花需求量为(支),由(Ⅰ)中频率分布直方图,可以求出可能取值、每个可能取值相应频率,每个可能取值相应的天数.分别求出空运250支,255支百合花时,销售总利润的大小,进行比较,得出结论【详解】解:(Ⅰ)四月前10天订单中百合需求量众数为255,平均数频率分布直方图补充如下:(Ⅱ)设订单中百合花需求量为(支),由(Ⅰ)中频率分布直方图,可能取值为235,245,255,265,相应频率分别为0.1,0.3,0.4,0.2,∴20天中相应的天数为2天,6天,8天,4天.①若空运250支,当日利润为,,当日利润为,,当日利润为,,当日利润为,20天总利润为元.②若空运255支,当日利润为,,当日利润为,,当日利润为,,当日利润为,20天总利润为元.∵,∴每天空运250支百合花四月后20天总利润更大.【点睛】本题考查了众数、平均数、频率分布直方图;重点考查了学生通过阅读,提取有用信息,用数学知识解决实际生活问题的能力18、(1)(2)存在,【解析】(1)根据题意分别由已知条件计算出的面积和的面积,利用求解,(2)如图建立空间直角坐标系,设,然后求出平面与平面的法向量,利用向量平夹角公式列方程可求得结果【小问1详解】在中,,因为,分别是,边上的中点,所以∥,,所以,所以,因为,所以平面,所以平面,因为平面,所以,所以,因为平面,平面,所以平面平面,因为,所以,因为,所以是等边三角形,取的中点,连接,则,,因为平面平面,平面平面,平面,所以平面,在中,,所以边上的高为,所以,在梯形中,,设点到平面的距离为,因为,所以,所以,得,所以点到平面的距离为【小问2详解】由(1)可知平面,,所以以为原点,建立如图所示的空间直角坐标系,则,设,则,设平面的法向量为,则,令,则,设平面的法向量为,则,令,则,则平面与平面夹角的余弦值为,两边平方得,,解得或(舍去),所以,所以19、(1);(2).【解析】(1)由两直线平行可得出关于的等式,求出的值,再代入两直线方程,验证两直线是否平行,由此可得出结果;(2)分析可知,求出直线在轴、轴上的截距,结合已知条件可得出关于的等式,即可解得的值.【小问1详解】解:由,则,即,解得或.当时,,,此时;当时,,,此时重合,不合乎题意.综上所述,;【小问2详解】解:对于直线,由已知可得,则,令,得;令,得.因为直线在轴、轴上截距之和等于,即,解得.20、(1)(2)【解析】(1)设等差数列的公差为d,由题意得列出方程组,可求得的值,代入公式,即可得答案.(2)由(1)可得,利用等比数列的定义,可证数列为等比数列,结合前n项和公式,即可得答案.【小问1详解】设等差数列的公差为d,由题意得,解得,所以通项公式【小问2详解】由(1)可得,,又,所以数列是以4为首项,4为公比的等比数列,所以21、(1)函数的单调性见解析;(2)证明见解析.【解析】(1)求出函数的导数,按a值分类讨论判断的正负作答.(2)将分别代入计算化简变形,再对所证不等式作等价变形,构造函数,借助函数导数推理作答.【小问1详解】已知函数的定义域为,,当时,恒成立,所以在区间上单调递增;当时,由,解得,由,解得,的单调递增区间为,单调递减区间为,所以,当时,在上单调递增,当时,在上单调递增,在上单调递

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论