




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省酒泉市敦煌中学2023年高二数学第一学期期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,角,,所对的边分别为,,,若,,,则A. B.2C.3 D.2.已知四棱锥,平面PAB,平面PAB,底面ABCD是梯形,,,,满足上述条件的四棱锥的顶点P的轨迹是()A.椭圆 B.椭圆的一部分C.圆 D.不完整的圆3.我国古代的数学名著《九章算术》中有“衰分问题”:今有女子善织,日自倍,五日织五尺,问次日织几问?其意为:一女子每天织布的尺数是前一天的2倍,5天共织布5尺,请问第二天织布的尺数是()A. B.C. D.4.已知两直线方程分别为l1:x+y=1,l2:ax+2y=0,若l1⊥l2,则a=()A2 B.-2C. D.5.已知两定点和,动点在直线上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的短轴的最小值为()A. B.C. D.6.某商场开通三种平台销售商品,五一期间这三种平台的数据如图1所示.该商场为了解消费者对各平台销售方式的满意程度,用分层抽样的方法抽取了6%的顾客进行满意度调查,得到的数据如图2所示.下列说法正确的是()A.样本中对平台一满意的消费者人数约700B.总体中对平台二满意的消费者人数为18C.样本中对平台一和平台二满意的消费者总人数为60D.若样本中对平台三满意消费者人数为120,则7.直线的倾斜角为()A.30° B.60°C.90° D.120°8.某一电子集成块有三个元件a,b,c并联构成,三个元件是否有故障相互独立.已知至少1个元件正常工作,该集成块就能正常运行.若每个元件能正常工作的概率均为,则在该集成块能够正常工作的情况下,有且仅有一个元件出现故障的概率为()A. B.C. D.9.已知随机变量服从正态分布,且,则()A.0.1 B.0.2C.0.3 D.0.410.将直线绕着原点逆时针旋转,得到新直线的斜率是()A. B.C. D.11.过抛物线的焦点作互相垂直的弦,则的最小值为()A.16 B.18C.32 D.6412.直线在y轴上的截距为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数在区间上单调递减,则实数的取值范围是________;14.某公司青年、中年、老年员工的人数之比为10∶8∶7,从中抽取100名作为样本,若每人被抽中的概率是0.2,则该公司青年员工的人数为__________15.用一个平面去截半径为5cm的球,截面面积是则球心到截面的距离为_______16.已知离心率为,且对称轴都在坐标轴上的双曲线C过点,过双曲线C上任意一点P,向双曲线C的两条渐近线分别引垂线,垂足分别是A,B,点O为坐标原点,则四边形OAPB的面积为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图甲,平面图形中,,沿将折起,使点到点的位置,如图乙,使.(1)求证:平面平面;(2)若点满足,求点到直线的距离.18.(12分)已知函数.(1)当时,求函数在时的最大值和最小值;(2)若函数在区间存在极小值,求a的取值范围.19.(12分)在平面直角坐标系内,椭圆E:过点,离心率为(1)求E的方程;(2)设直线(k∈R)与椭圆E交于A,B两点,在y轴上是否存在定点M,使得对任意实数k,直线AM,BM的斜率乘积为定值?若存在,求出点M的坐标;若不存在,说明理由20.(12分)已知首项为1的等比数列,满足(1)求数列的通项公式;(2)求数列的前n项和21.(12分)已知直线与直线交于点.(1)求过点且平行于直线的直线的方程,并求出两平行直线间的距离;(2)求过点并且在两坐标轴上的截距互为相反数的直线的方程.22.(10分)已知椭圆与直线相切,点G为椭圆上任意一点,,,且的最大值为3(1)求椭圆C的标准方程;(2)设直线与椭圆C交于不同两点E,F,点O为坐标原点,且,当的面积取最大值时,求的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用正弦定理,可直接求出的值.【详解】在中,由正弦定理得,所以,故选A.【点睛】本题考查利用正弦定理求边,要记得正弦定理所适用的基本类型,考查计算能力,属于基础题2、D【解析】根据题意,分析得动点满足的条件,结合圆以及椭圆的方程,以及点的限制条件,即可判断轨迹.【详解】因为平面PAB,平面PAB,则//,又面面,故可得;因为,故可得,则,综上所述:动点在垂直的平面中,且满足;为方便研究,不妨建立平面直角坐标系进行说明,在平面中,因为,以中点为坐标原点,以为轴,过且垂直于的直线为轴建立平面直角坐标系,如下所示:因为,故可得,整理得:,故动点的轨迹是一个圆;又当三点共线时,几何体不是空间几何体,故动点的轨迹是一个不完整的圆.故选:.【点睛】本题考察立体几何中动点的轨迹问题,处理的关键是利用立体几何知识,找到动点满足的条件,进而求解轨迹.3、C【解析】根据等比数列求和公式求出首项即可得解.【详解】由题可得该女子每天织布的尺数成等比数列,设其首项为,公比为,则,解得所以第二天织布的尺数为.故选:C4、B【解析】直接利用直线垂直公式计算得到答案.【详解】因为l1⊥l2,所以k1k2=-1,即-=1,解得a=-2.故选:【点睛】本题考查了根据直线垂直计算参数,属于简单题.5、B【解析】根据题意,点关于直线对称点的性质,以及椭圆的定义,即可求解.【详解】根据题意,设点关于直线的对称点,则,解得,即.根据椭圆的定义可知,,当、、三点共线时,长轴长取最小值,即,由且,得,因此椭圆C的短轴的最小值为.故选:B.6、C【解析】根据扇形图和频率分布直方图判断.【详解】对于A:样本中对平台一满意的人数为,故选项A错误;对于B:总体中对平台二满意的人数约为,故选项B错误;对于C:样本中对平台一和平台二满意的总人数为:,故选项C正确:对于D:对平台三的满意率为,所以,故选项D错误故选:C7、B【解析】根据给定方程求出直线斜率,再利用斜率的定义列式计算得解.【详解】直线的斜率,设其倾斜角为,显然,则有,解得,直线的倾斜角为.故选:B8、A【解析】记事件为该集成块能够正常工作,事件为仅有一个元件出现故障,进而结合对立事件的概率公式得,再根据条件概率公式求解即可.【详解】解:记事件为该集成块能够正常工作,事件为仅有一个元件出现故障,则为该集成块不能正常工作,所以,,所以故选:A9、A【解析】利用正态分布的对称性和概率的性质即可【详解】由,且则有:根据正态分布的对称性可知:故选:A10、B【解析】由题意知直线的斜率为,设其倾斜角为,将直线绕着原点逆时针旋转,得到新直线的斜率为,化简求值即可得到答案.【详解】由知斜率为,设其倾斜角为,则,将直线绕着原点逆时针旋转,则故新直线的斜率是.故选:B.11、B【解析】根据抛物线方程求出焦点坐标,分别设出,所在直线方程,与抛物线方程联立,利用根与系数的关系及弦长公式求得,,然后利用基本不等式求最值.【详解】抛物线的焦点,设直线的直线方程为,则直线的方程为.,,,.由,得,,同理可得..当且仅当,即时取等号.所以的最小值为.故选:B12、D【解析】将代入直线方程求y值即可.【详解】令,则,得.所以直线在y轴上的截距为.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】函数,又函数在区间上单调递减∴在区间上恒成立即,解得:,当时,经检验适合题意故答案为【点睛】f(x)为增函数的充要条件是对任意的x∈(a,b)都有f′(x)≥0且在(a,b)内的任一非空子区间上f′(x)≠0.应注意此时式子中的等号不能省略,否则漏解14、200【解析】先根据分层抽样的方法计算出该单位青年职工应抽取的人数,进而算出青年职工的总人数.【详解】由题意,从中抽取100名员工作为样本,需要从该单位青年职工中抽取(人).因为每人被抽中的概率是0.2,所以青年职工共有(人).故答案:200.15、4cm【解析】根据圆面积公式算出截面圆的半径,利用球的截面圆性质与勾股定理算出球心到截面的距离【详解】解:设截面圆的半径为r,截面的面积是,,可得又球的半径为5cm,根据球的截面圆性质,可得截面到球心的距离为故答案为:4cm【点睛】本题主要考查了球的截面圆性质、勾股定理等知识,考查了空间想象能力,属于基础题16、2【解析】由离心率为,∴双曲线为等轴双曲线,设双曲线方程为,可得双曲线方程为,设,则到两渐近线的距离为,,从而可求四边形的面积【详解】由离心率为,∴双曲线为等轴双曲线,设双曲线方程为,又双曲线过点,,∴,故双曲线方程为,∴渐近线方程为,设,则到两渐近线的距离为,,且,∵渐近线方程为,∴四边形为矩形,∴四边形的面积为故答案为:2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)利用给定条件可得平面,再证即可证得平面推理作答.(2)由(1)得EA,EB,EG两两垂直,建立空间直角坐标系,先求出向量在向量上的投影的长,然后由勾股定理可得答案.【小问1详解】因为,则,且,又,平面,因此,平面,即有平面,平面,则,而,则四边形为等腰梯形,又,则有,于是有,则,即,,平面,因此,平面,而平面,所以平面平面.【小问2详解】由(1)知,EA,EB,EG两两垂直,以点E为原点,射线EA,EB,EG分别为x,y,z轴非负半轴建立空间直角坐标系,如图,因,四边形是矩形,则,即,,,由,则则则向量在向量上的投影的长为又,所以点到直线的距离18、(1)最大值为9,最小值为;(2).【解析】(1)利用导数研究函数的单调性,进而确定在的极值、端点值,比较它们的大小即可知最值.(2)讨论参数a的符号,利用导数研究的单调性,结合已知区间的极值情况求参数a的范围即可.【小问1详解】由题,时,,则,令,得或1,则时,,单调递增;时,,单调递减;时,,单调递增.∴在时取极大值,在时取极小值,又,,综上,在区间上取得的最大值为9,最小值为.小问2详解】,且,当时,单调递增,函数没有极值;当时,时,单调递增;时,单调递减;时,,单调递增.∴在取得极大值,在取得极小值,则;当时,时,单调递增;时,单调递减;时,,单调递增.∴在取得极大值,在取得极小值,由得:.综上,函数在区间存在极小值时a的取值范围是.19、(1)(2)存在,或者【解析】(1)由离心率和椭圆经过的点列出方程组,求出,得到椭圆方程;(2)假设存在,设出直线,联立椭圆,利用韦达定理得到两根之和,两根之积,结合斜率乘积为定值得到关于的方程,求出答案.【小问1详解】由题可得,,①由,得,即,则,②将②代入①,解得,,故E的方程为【小问2详解】设存在点满足条件记,由消去y,得.显然,判别式>0,所以,,于是===上式为定值,当且仅当,解得或此时,或所以,存在定点或者满足条件20、(1)(2)【解析】(1)根据已知条件求得数列的公比,由此求得.(2)利用错位相减求和法求得.【小问1详解】设等比数列的公比为,由,可得.故数列是以1为首项,3为公比的等比数列,所以【小问2详解】由(1)得,,①,②①②,得所以21、(1);.(2)或.【解析】(1)首先求得交点坐标,然后利用待定系数法确定直线方程,再根据两平行直线之间距离公式即可计算距离;(2)根据截距式方程的求法解答【小问1详解】由得设直线的方程为,代入点坐标得,∴直线的方程为∴两平行线间的距离【小问2详解】当直线过坐标原点时,直线的方程为,即;当直线不过坐标原点时,设直线的方程为,代入点坐标得,∴直线的方程的方程为,即综上所述,直线的方程为或22、(1)(2)【解析】(1)设点,根据题意,得到,根据向量数量积的坐标表示,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024项目管理考试辅导材料试题及答案
- 广告策划中的危机公关处理考核试卷
- 财务数据解读与应用试题及答案
- 陕西排水带施工方案
- 针对新形势的注册会计师考试变革探讨试题及答案
- 2024项目管理专业知识考题试题及答案
- 2024年项目成功的关键因素与应对方案试题及答案
- 打井前施工方案怎么写
- 项目管理专业人士资格考试的备考经验试题及答案
- 电视机语音助手与智能交互技术考核试卷
- 婚育情况登记表
- INVOICE-商业发票样本格式
- 圆周率1000000位 完整版
- DB33-1036-2021《公共建筑节能设计标准》
- 岩芯鉴定手册
- 快速排序算法高校试讲PPT
- 甘肃历史与甘肃文化
- 工程勘察设计收费标准
- 高边坡施工危险源辨识及分析
- 江苏工业企业较大以上风险目录
- 监理质量评估报告(主体分部)
评论
0/150
提交评论